Functional Clustering for Longitudinal Associations between Social Determinants of Health and Stroke Mortality in the US (2024)

\externaldocument

supp

Fangzhi Luo
Department of Epidemiology and Biostatistics,
College of Public Health,University of Georgia, Athens, GA, USA
Jianbin Tan
Department of Biostatistics and Bioinformatics,
School of Medicine, Duke University, Durham, NC, USA
Donglan Zhang
Department of Foundations of Medicine,
NYU Grossman Long Island School of Medicine, Mineola, NY, USA
Hui Huang
Center for Applied Statistics and School of Statistics,
Renmin University of China, Beijing, China
Ye Shen
Department of Epidemiology and Biostatistics,
College of Public Health,University of Georgia, Athens, GA, USA
Jianbin Tan is the co-first author.The authors gratefully acknowledge the National Natural Science Foundation of China (grants nos. 12292980, 12292984 and 12231017) and the MOE project of key research institute of humanities and social sciences (grant no. 22JJD910001).

Abstract

Understanding longitudinally changing associations between Social determinants of health (SDOH) and stroke mortality is crucial for timely stroke management. Previous studies have revealed a significant regional disparity in the SDOH – stroke mortality associations.However, they do not develop data-driven methods based on these longitudinal associations for regional division in stroke control.To fill this gap, we propose a novel clustering method for SDOH – stroke mortality associations in the US counties.To enhance interpretability and statistical efficiency of the clustering outcomes, we introduce a new class of smoothness-sparsity pursued penalties for simultaneous clustering and variable selection in the longitudinal associations.As a result, we can identify important SDOH that contribute to longitudinal changes in the stroke mortality, facilitating clustering of US counties into several regions based on how these SDOH relate to stroke mortality.The effectiveness of our proposed method is demonstrated through extensive numerical studies. By applying our method to a county-level SDOH and stroke mortality longitudinal data, we identify 18 important SDOH for stroke mortality and divide the US counties into two clusters based on these selected SDOH.Our findings unveil complex regional heterogeneity in the longitudinal associations between SDOH and stroke mortality, providing valuable insights in region-specific SDOH adjustments for mitigating stroke mortality.

Keywords: Functional clustering,Mixture model,Variable selection,Regularized expectation-maximization algorithm,Stroke

1 Introduction

The burden of stroke in the United States is enormous.As one of the most prevalent cardiovascular diseases,stroke remains consistently among the top five causes of death in the country (Koton etal., 2014), leading to over 130,000 fatalities annually (Hollowayetal., 2014).In the effort to prevent stroke deaths,Social Determinants of Health (SDOH) – encompassing economic, social, and environmental conditions where people live, learn, work, and play (Havranek etal., 2015) – have garnered significant attention due to their strong associations with stroke mortality (Powell-Wileyetal., 2022).Notably, in 2015, the impact of SDOH on stroke mortality was highlighted in an important scientific statement by the American Heart Association (AHA) (Mozaffarianetal., 2015).Furthermore, since 2019, the AHA has consistently emphasized the importance of SDOH in its Annual Heart Disease and Stroke Statistics Report, spanning across all chapters (Benjaminetal., 2019).These declarations underscore the urgency of understanding the associations between SDOH and stroke mortality. This understanding is crucial for informing targeted interventions aimed at controlling stroke mortality by addressing underlying social, economic, and environmental factors.

Recent findings have revealed a clear regional disparity in the associations between SDOH and stroke mortality.For instance, Zelko etal. (2023) identified state-wise differences in these associations.Additionally, Villablanca etal. (2016) and Son etal. (2023) observed significant disparities in the associations between rural and urban areas.To address such regional disparities, various state-wise (Gebreab etal., 2015) and rural-urban strategies (Labarthe etal., 2014; Record etal., 2015; Kapral etal., 2019) have been developed for region–specific stroke management. However, the existing literature does not guarantee that areas within a divided region share similar associations between SDOH and stroke mortality. Hence, employing a uniform SDOH adjustment in divided regions may not be an effective strategy for preventing stroke disease.Moreover, many SDOH have been found to exhibit longitudinal changes in their associations with stroke mortality (Heetal., 2021), a factor crucial for timely policymaking in stroke management. Targeting these longitudinal associations between SDOH and stroke mortality, clustering becomes a vital tool for determining reasonable regional divisions for stroke prevention. Nonetheless, this remains an unsolved issue requiring further investigation.

In this work, we propose a novel method for clustering longitudinal associations between SDOH and stroke mortality. In general, the clustering is implemented based on the similarity among associations from different counties in the US, and the resulting clustering outcomes can then be used to inform region-specific prevention measures for controlling stroke mortality.

To achieve this, we utilize county-level longitudinal data of SDOH and stroke mortality in the US, and treat the longitudinally observed data in each county as functional data.As a result, the concurrent associations between SDOH and stroke mortality are inherently functional objects, which can be effectively modeled using functional regression models, where the coefficients are also functional, capturing the relationship between SDOH and stroke mortality over time.For the clustering process, we model the functional coefficients using a finite mixture model, leading to a finite mixture of functional regression models.This approach enables the clustering of counties in the US into different regions based on the relationship between their SDOH and stroke mortality.

Our task essentially differs from the common clustering procedures for longitudinal data (Jacques andPreda, 2013, 2014; Liangetal., 2021), which primarily apply to observable longitudinal outcomes. In contrast, the county-level longitudinal associations between SDOH and stroke mortality in our case are unobservable.For clustering of these associations, one might consider applying the finite mixture of regression models (Jacobsetal., 1991; Jiang andTanner, 1999) to the SDOH and stroke mortality longitudinal data. However, this method cannot capture longitudinal changes in the associations within the clustering procedures, potentially resulting in unreliable clustering outcomes due to the disregard of longitudinal signals.In light of functional data analysis (Ramsay andSilverman, 2002, 2005), some studies proposed a finite mixture of functional regression models for clustering longitudinal associations (Yaoetal., 2011; Lu and Song, 2012).Nonetheless, they do not address the issue of collinearity among covariates in their functional regression models.In our study, the collection of SDOH serves as functional covariates and exhibits significant collinearity, stemming from their derivation from multiple domains (e.g., social, economic, and environmental domains). In this case, ignoring colinearity among the SDOH data may lead to misspecification in the functional regression model. This oversight could compromise the accuracy of the resultant clustering outcome.

Furthermore, to enhance interpretability, existing studies analyzing associations between SDOH and stroke mortality often adopt a pre-selection step on the SDOH covariates (Tsaoetal., 2022, 2023), as their number is usually large, containing hundreds of variables.In our case, the pre-selection of longitudinal SDOH data can be achieved through variable selection in functional regression models (Wangetal., 2008; Kongetal., 2016; Goldsmith andSchwartz, 2017).However, these methods generally assume that associations between covariates and responses are invariant across different samples. This assumption limits their direct applicability to our case, where SDOH covariates may exhibit distinct associations with stroke mortality among different counties.Moreover, performing selections of SDOH prior to clustering may introduce biases for the subsequent clustering outcome, as the selection of SDOH is unrelated to the clustering process.On the other hand, without proper selection of SDOH, the clustering process may be statistically inefficient due to the complex structure of longitudinal SDOH data, which possess high-dimensionality and functional nature simultaneously.To accommodate such a complicated structure, it would be beneficial to connect variable selections of SDOH to the clustering of longitudinal associations, yet this topic is rarely discussed in the literature.

In this article, we introduce a novel method for simultaneous clustering and variable selection of longitudinal associations between SDOH and stroke mortality in US counties. Our method, based on a finite mixture of functional linear concurrent models (FMFLCM), incorporates a new class of smoothness-sparsity pursued penalties to address the functional nature and high-dimensionality of the SDOH data. These penalties are designed to borrow information from distinct clusters of the FMFLCM, thereby enhancing statistical efficiency for both clustering and variable selection, and simultaneously addressing the collinearity issue among the SDOH data.For the estimation, we develop a novel regularized expectation-maximization (REM) algorithm by incorporating the proposed penalties.This approach allows for the clustering of longitudinal associations while embedding a variable selection step of SDOH covariates. As a result, the cluster memberships and the selected SDOH can be iteratively updated within the REM algorithm. This iterative updating process helps mitigate potential biases stemming from the selected covariates during the clustering process.Through these procedures, we provide a novel data-driven method for county-level regional division, aiming to offer insights into region-specific stroke prevention measures for US counties.

The remainder of this article is organized as follows.In Section 2, we begin by introducing the SDOH and stroke mortality dataset, and then proceed to demonstrate some of their data features in Section 2.1. Following this, we present the FMFLCM in Section 2.2, followed by the demonstration of sparsity and smoothness pursued penalties in Section 2.3, and the REM in Section 2.4. In Section 3, we conduct simulation studies to compare the proposed methods with some competing approaches in terms of clustering performance, variable selection, and parameter estimation. In Section 4, we apply the proposed clustering method to our dataset and present the clustering result, along with the estimation relating to the selected SDOH. Finally, We provide conclusions and discussion in Section 5.

2 Methodologies

2.1 Data Source

In 2020, the Agency for Healthcare Research and Quality (AHRQ) compiled and released a SDOH database for a better understanding of community-level factors, healthcare quality and delivery, and individual health.The SDOH database contains yearly records of 345345345345 SDOH collected from 3226 counties from 2009 to 2018.These SDOH are classified into 5 domains: (1) social context, such as age, race and ethnicity, and veteran status; (2) economic context, such as income and unemployment; (3) education; (4) physical infrastructure, such as housing, food insecurity, and transportation; and (5) health care contexts, such as health insurance coverage and health care access.To study the association between the SDOH and stroke mortality, we connect the SDOH database with a stroke mortality data provided by the Interactive Atlas of Heart Disease and Stroke at the Centers for Disease Control and Prevention (CDC) on the county level.The stroke mortality database was originally compiled from 2 data sources: (1) the National Vital Statistics System at the National Center for Health Statistics, and (2) the hospital discharge data from the Centers for Medicare & Medicaid Services’ Medicare Provider Analysis and Review (MEDPAR) file.All data and materials used in this analysis are publicly available at the AHRQ website: https://www.ahrq.gov/sdoh/index.html and CDC website https://www.cdc.gov/dhdsp/maps/atlas/index.htm.Since the AHRQ database isHIPAA (Health Insurance Portability and Accountability Act) compliant, our data do not require to be reviewed by an institutional review board.

It’s worth noting that the SDOH dataset contains missing values. Following the approach of a previous study on the dataset (Son etal., 2023), we exclude the SDOH variables that have a missing proportion of more than 60%. The average missing proportion of the remaining variables is 3.6%.For these missing values, we employ a k-nearest neighbors (KNN) method (Kowarik andTempl, 2016) to impute the SDOH data, ensuring the SDOH and stroke mortality data are aligned with time for each county.The detailed implementation of the KNN is provided in Part A of the Supplementary Material.

Functional Clustering for Longitudinal Associations between Social Determinants of Health and Stroke Mortality in the US (1)

As mentioned previously, significant collinearity may exist among the SDOH data. This phenomenon is observed in our dataset, where the longitudinal data between some of the SDOH exhibit significant correlations as illustrated in Figure 1.Besides, coinciding with the previous studies (Villablanca etal., 2016; Heetal., 2021; Son etal., 2023), evident regional disparities and longitudinal variations can also observed in the SDOH – stroke mortality associations from our dataset.To demonstrate this,we calculate the yearly Pearson correlation between stroke mortality and the percentage of Asian and Pacific Island language speakers (PAPL), one principal sociocultural factor in the SDOH.To calculate the yearly correlations, we first divide the counties in the US into several regions, and presume that the counties in a divided region exhibit the same SDOH – stroke mortality correlation.We consider two types of divisions: state-wise division (Zelko etal., 2023) and rural-urban division (Son etal., 2023).The yearly correlations from 2009-2018 for each state, or for rural and urban areas, are presented in panels (B) and (D) of Figure 2, respectively.Besides, we also present the geographical maps of correlations for the years 2009, 2013, and 2018 in panels (A) and (C) of Figure 2, respectively for two types of division strategies.

Functional Clustering for Longitudinal Associations between Social Determinants of Health and Stroke Mortality in the US (2)

From the maps in Figure 2, we observe significant regional disparities in the correlations among different states, as well as between rural and urban areas. These correlations all exhibit changes over time.In addition, we find that the longitudinal correlations in rural and urban areas (shown in panel (D) of Figure 2) are consistently negative over time, while the correlations from some states (such as Nevada, as seen in panel (B) of Figure 2) are mostly positive. These results suggest that the outcomes of longitudinal associations are highly sensitive to the region division strategy, and different region divisions may lead to inconsistent conclusions for the stroke management. As such, we require a reasonable data-driven method for the region division in exploring SDOH – stroke mortality associations.

2.2 Finite Mixture of Functional Linear Concurrent models

Let Yi(t)subscript𝑌𝑖𝑡Y_{i}(t)\in\mathbb{R}italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) ∈ blackboard_R and 𝑿i(t):=(Xi1(t),,Xip(t))Tpassignsubscript𝑿𝑖𝑡superscriptsubscript𝑋𝑖1𝑡subscript𝑋𝑖𝑝𝑡𝑇superscript𝑝\bm{X}_{i\cdot}(t):=(X_{i1}(t),\dots,X_{ip}(t))^{T}\in\mathbb{R}^{p}bold_italic_X start_POSTSUBSCRIPT italic_i ⋅ end_POSTSUBSCRIPT ( italic_t ) := ( italic_X start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT ( italic_t ) , … , italic_X start_POSTSUBSCRIPT italic_i italic_p end_POSTSUBSCRIPT ( italic_t ) ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT represent the stroke mortality and SDOH data in the i𝑖iitalic_ith county at time t𝑡titalic_t, respectively, where i=1,,n𝑖1𝑛i=1,\ldots,nitalic_i = 1 , … , italic_n and t𝒯𝑡𝒯t\in\mathcal{T}italic_t ∈ caligraphic_T, with n𝑛nitalic_n being the number of counties and 𝒯𝒯\mathcal{T}caligraphic_T being the observed time period. Here, Yi()subscript𝑌𝑖Y_{i}(\cdot)italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ⋅ ) and 𝑿i()subscript𝑿𝑖\bm{X}_{i\cdot}(\cdot)bold_italic_X start_POSTSUBSCRIPT italic_i ⋅ end_POSTSUBSCRIPT ( ⋅ ) are considered the functional response and covariate samples, respectively, with n𝑛nitalic_n and p𝑝pitalic_p being the sample size and dimension of the covariates.Without loss of generality, 𝒯𝒯\mathcal{T}caligraphic_T is [0,1]01[0,1][ 0 , 1 ] in this article.

We focus on the association between Yi(t)subscript𝑌𝑖𝑡Y_{i}(t)italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) and 𝑿i(t)subscript𝑿𝑖𝑡\bm{X}_{i\cdot(t)}bold_italic_X start_POSTSUBSCRIPT italic_i ⋅ ( italic_t ) end_POSTSUBSCRIPT for t[0,1]𝑡01t\in[0,1]italic_t ∈ [ 0 , 1 ], referred to as longitudinal associations in what follows.To cluster the longitudinal associations of different counties i𝑖iitalic_i, we assume the samples {Yi(),𝑿i();i=1,,n}formulae-sequencesubscript𝑌𝑖subscript𝑿𝑖𝑖1𝑛\{Y_{i}(\cdot),{\bm{X}_{i\cdot}(\cdot)};i=1,\ldots,n\}{ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ⋅ ) , bold_italic_X start_POSTSUBSCRIPT italic_i ⋅ end_POSTSUBSCRIPT ( ⋅ ) ; italic_i = 1 , … , italic_n } can be divided into K𝐾Kitalic_K clusters and follow a finite mixture of functional linear concurrent models

Yi(t)=j=1pXij(t)βjk(t)+εik(t)ifZi=k,subscript𝑌𝑖𝑡superscriptsubscript𝑗1𝑝subscript𝑋𝑖𝑗𝑡subscript𝛽𝑗𝑘𝑡subscript𝜀𝑖𝑘𝑡ifsubscript𝑍𝑖𝑘Y_{i}(t)=\sum_{j=1}^{p}X_{ij}(t)\beta_{jk}(t)+\varepsilon_{ik}(t)\ \text{if}\ %Z_{i}=k,italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_t ) italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( italic_t ) + italic_ε start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT ( italic_t ) if italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_k ,(1)

where Zisubscript𝑍𝑖Z_{i}italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the cluster membership for the i𝑖iitalic_ith subject,βjk()subscript𝛽𝑗𝑘\beta_{jk}(\cdot)italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( ⋅ ) is the functional coefficient for the k𝑘kitalic_kth group to capture the longitudinal associations between the response and the j𝑗jitalic_jth covariate,and εik(t)subscript𝜀𝑖𝑘𝑡\varepsilon_{ik}(t)italic_ε start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT ( italic_t ) is a Gaussian white noise with variance σk2superscriptsubscript𝜎𝑘2\sigma_{k}^{2}italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for each k𝑘kitalic_k.We assume that the white noise processes {εik();i=1,,n,k=1,,K}formulae-sequencesubscript𝜀𝑖𝑘𝑖1𝑛𝑘1𝐾\{\varepsilon_{ik}(\cdot);i=1,\ldots,n,k=1,\ldots,K\}{ italic_ε start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT ( ⋅ ) ; italic_i = 1 , … , italic_n , italic_k = 1 , … , italic_K } are independent across different i𝑖iitalic_is and k𝑘kitalic_ks, and Z1,,Znsubscript𝑍1subscript𝑍𝑛Z_{1},\ldots,Z_{n}italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are i.i.d. samples from a multinomial distribution on {1,,K}1𝐾\{1,\ldots,K\}{ 1 , … , italic_K } with(Zi=k)=πksubscript𝑍𝑖𝑘subscript𝜋𝑘\mathbb{P}(Z_{i}=k)=\pi_{k}blackboard_P ( italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_k ) = italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT.

Let 𝜷(t)={βjk(t)}j=1,,p;k=1,,K𝜷𝑡subscriptsubscript𝛽𝑗𝑘𝑡formulae-sequence𝑗1𝑝𝑘1𝐾\bm{\beta}(t)=\left\{\beta_{jk}(t)\right\}_{j=1,\ldots,p;k=1,\ldots,K}bold_italic_β ( italic_t ) = { italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( italic_t ) } start_POSTSUBSCRIPT italic_j = 1 , … , italic_p ; italic_k = 1 , … , italic_K end_POSTSUBSCRIPT, 𝝈2:=(σ12,,σK2)Tassignsuperscript𝝈2superscriptsuperscriptsubscript𝜎12superscriptsubscript𝜎𝐾2𝑇\bm{\sigma}^{2}:=(\sigma_{1}^{2},\ldots,\sigma_{K}^{2})^{T}bold_italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT := ( italic_σ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , … , italic_σ start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT and 𝝅:=(π1,,πK)Tassign𝝅superscriptsubscript𝜋1subscript𝜋𝐾𝑇\bm{\pi}:=(\pi_{1},\ldots,\pi_{K})^{T}bold_italic_π := ( italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_π start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT.We use 𝜷k(t)subscript𝜷absent𝑘𝑡\bm{\beta}_{\cdot k}(t)bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( italic_t ) and 𝜷j(t)subscript𝜷𝑗𝑡\bm{\beta}_{j\cdot}(t)bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ( italic_t ) to denote the k𝑘kitalic_kth column and the j𝑗jitalic_jth row of 𝜷(t)𝜷𝑡\bm{\beta}(t)bold_italic_β ( italic_t ), respectively.For ease of notation, we might use 𝜷𝜷\bm{\beta}bold_italic_β, 𝜷ksubscript𝜷absent𝑘\bm{\beta}_{\cdot k}bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT, 𝜷jsubscript𝜷𝑗\bm{\beta}_{j\cdot}bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT, and βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT to represent𝜷()𝜷\bm{\beta}(\cdot)bold_italic_β ( ⋅ ), 𝜷k()subscript𝜷absent𝑘\bm{\beta}_{\cdot k}(\cdot)bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( ⋅ ), 𝜷j()subscript𝜷𝑗\bm{\beta}_{j\cdot}(\cdot)bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ( ⋅ ) and βjk()subscript𝛽𝑗𝑘\beta_{jk}(\cdot)italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( ⋅ ) in what follows.

Since our dataset are only observed on a finite time grid, we assume that {(Yi(tis),𝑿i(tis));\big{\{}\big{(}Y_{i}(t_{is}),\bm{X}_{i}(t_{is})\big{)};{ ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) ) ; i=1,,n,s=1,,Si}i=1,\ldots,n,s=1,\ldots,S_{i}\big{\}}italic_i = 1 , … , italic_n , italic_s = 1 , … , italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } is the observed data for FMFLCM, where {tis;i=1,,n,s=1,,Si}𝒯\{t_{is};i=1,\ldots,n,s=1,\ldots,S_{i}\}\subset\mathcal{T}{ italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ; italic_i = 1 , … , italic_n , italic_s = 1 , … , italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } ⊂ caligraphic_T.The log-likelihood of the parameters 𝚽:=(𝜷,𝝈2,𝝅)assign𝚽𝜷superscript𝝈2𝝅{\bm{\Phi}}:=(\bm{\beta},\bm{\sigma}^{2},\bm{\pi})bold_Φ := ( bold_italic_β , bold_italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , bold_italic_π ) is then given as

l(𝚽)𝑙𝚽\displaystyle l({\bm{\Phi}})italic_l ( bold_Φ )=i=1ns=1Silog{k=1Kπkf(Yi(tis);𝑿i(tis)T𝜷k(tis),σk2)},absentsuperscriptsubscript𝑖1𝑛superscriptsubscript𝑠1subscript𝑆𝑖logsuperscriptsubscript𝑘1𝐾subscript𝜋𝑘𝑓subscript𝑌𝑖subscript𝑡𝑖𝑠subscript𝑿𝑖superscriptsubscript𝑡𝑖𝑠𝑇subscript𝜷absent𝑘subscript𝑡𝑖𝑠superscriptsubscript𝜎𝑘2\displaystyle=\sum_{i=1}^{n}\sum_{s=1}^{S_{i}}\text{log}\left\{\sum_{k=1}^{K}{%\pi_{k}}f\left(Y_{i}(t_{is});\bm{X}_{i}(t_{is})^{T}\bm{\beta}_{\cdot k}(t_{is}%),\sigma_{k}^{2}\right)\right\},= ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT log { ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_f ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) ; bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) } ,(2)

where f(;μ,σ2)𝑓𝜇superscript𝜎2f(\cdot;\mu,\sigma^{2})italic_f ( ⋅ ; italic_μ , italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) is a Gaussian density function with mean μ𝜇\muitalic_μ and variance σ2superscript𝜎2\sigma^{2}italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.One may adopt the maximum likelihood estimator (MLE) of (2) to estimate 𝚽𝚽\bm{\Phi}bold_Φ.However, given that the functional coefficient 𝜷𝜷\bm{\beta}bold_italic_β is an infinite-dimensional parameter, the optimization of 𝜷𝜷\bm{\beta}bold_italic_β in (2) is generally an ill-posed problem.Furthermore, the MLE of 𝜷𝜷\bm{\beta}bold_italic_β may also suffer from the curse of dimensionality, i.e., p𝑝pitalic_p is large. For this case, the MLE of (2) may be far from its true value, or even does not exist (Wangetal., 2008; Yi andCaramanis, 2015).

To solve the above issues, we propose a class of penalties in Section 2.3 to regularize the smoothness and the sparsity of 𝜷𝜷\bm{\beta}bold_italic_β.Based on the proposed penalties,we develop a regularized expectation maximization algorithm in Section 2.4 to implement the clustering for subjects, the estimation for 𝜷𝜷\bm{\beta}bold_italic_β, and the variable selections for the covariates simultaneously.

2.3 Sparsity and Smoothness Pursued Penalties

In this subsection, we propose a class of smoothly clipped absolute deviation (SCAD) type penalties (Fan andLi, 2001) to adjust the aforementioned ill-posed problems.The SCAD penalty takes the form

𝑷SCAD(u;λ)={λuif 0uλ,(u22γλu+λ2)2(γ1)ifλ<u<γλ,(γ+1)λ22ifuγλ,subscript𝑷SCAD𝑢𝜆cases𝜆𝑢if 0𝑢𝜆superscript𝑢22𝛾𝜆𝑢superscript𝜆22𝛾1if𝜆𝑢𝛾𝜆𝛾1superscript𝜆22if𝑢𝛾𝜆\bm{P}_{\text{SCAD}}\left(u;\lambda\right)=\left\{\begin{array}[]{ll}\lambda u%&\text{if}\ 0\leq u\leq\lambda,\\-\frac{(u^{2}-2\gamma\lambda u+\lambda^{2})}{2(\gamma-1)}&\text{if}\ \lambda<u%<\gamma\lambda,\\\frac{(\gamma+1)\lambda^{2}}{2}&\text{if}\ u\geq\gamma\lambda,\end{array}\right.bold_italic_P start_POSTSUBSCRIPT SCAD end_POSTSUBSCRIPT ( italic_u ; italic_λ ) = { start_ARRAY start_ROW start_CELL italic_λ italic_u end_CELL start_CELL if 0 ≤ italic_u ≤ italic_λ , end_CELL end_ROW start_ROW start_CELL - divide start_ARG ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_γ italic_λ italic_u + italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG 2 ( italic_γ - 1 ) end_ARG end_CELL start_CELL if italic_λ < italic_u < italic_γ italic_λ , end_CELL end_ROW start_ROW start_CELL divide start_ARG ( italic_γ + 1 ) italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG end_CELL start_CELL if italic_u ≥ italic_γ italic_λ , end_CELL end_ROW end_ARRAY

where u𝑢uitalic_u is a scalar parameter to be penalized, λ𝜆\lambdaitalic_λ is a tuning parameter, and γ𝛾\gammaitalic_γ is a hyperparameter chosen to be 3.7 as suggested in Fan andLi (2001).We extend the SCAD penalty for the functional objects 𝜷𝜷\bm{\beta}bold_italic_β, which is the functional SCAD (FSCAD) penalty

𝑷FSCAD(𝜷;λ,r):=j=1pk=1K𝑷SCAD(βjkr;λ),assignsubscript𝑷FSCAD𝜷𝜆𝑟superscriptsubscript𝑗1𝑝superscriptsubscript𝑘1𝐾subscript𝑷SCADsubscriptnormsubscript𝛽𝑗𝑘𝑟𝜆\bm{P}_{\text{FSCAD}}(\bm{\beta};{\lambda},r):=\sum_{j=1}^{p}\sum_{k=1}^{K}\bm%{P}_{\text{SCAD}}(\|\beta_{jk}\|_{r};{\lambda}),bold_italic_P start_POSTSUBSCRIPT FSCAD end_POSTSUBSCRIPT ( bold_italic_β ; italic_λ , italic_r ) := ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT bold_italic_P start_POSTSUBSCRIPT SCAD end_POSTSUBSCRIPT ( ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ; italic_λ ) ,(3)

where βjkr=βjk2+rβjk′′subscriptnormsubscript𝛽𝑗𝑘𝑟superscriptnormsubscript𝛽𝑗𝑘2𝑟normsuperscriptsubscript𝛽𝑗𝑘′′\|\beta_{jk}\|_{r}=\sqrt{\|\beta_{jk}\|^{2}+r\|\beta_{jk}^{{}^{\prime\prime}}\|}∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = square-root start_ARG ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_r ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ∥ end_ARG withf=f2(t)dtnorm𝑓superscript𝑓2𝑡differential-d𝑡\|f\|=\sqrt{\int f^{2}(t)\ \mathrm{d}t}∥ italic_f ∥ = square-root start_ARG ∫ italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) roman_d italic_t end_ARG being an L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT norm for a function f𝑓fitalic_f.Here, βjkrsubscriptnormsubscript𝛽𝑗𝑘𝑟\|\beta_{jk}\|_{r}∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT measures the magnitude and smoothness of βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT simultaneously(Meieretal., 2009), in which r𝑟ritalic_r leverages the function’s magnitude and smoothness in the norm.By penalizing 𝜷𝜷\bm{\beta}bold_italic_β using (3),we can penalize the smoothness of each βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT to deal with its functional nature, and shrink the βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT with small norm βjkrsubscriptnormsubscript𝛽𝑗𝑘𝑟\|\beta_{jk}\|_{r}∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT to zero (Huangetal., 2009) for the purpose of variable selections.

It’s worth noting that our SDOH functional covariates exhibit significant collinearity as illustrated in Figure 1, and the presence of the collinearity may enlarge variance and lead to misspecification in variable selections (Zou andHastie, 2005).To adjust for this issue, we adopt a similar strategy as the elastic net (Zou andHastie, 2005) to add an L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term to the FSCAD penalty (3).As such, we obtain the functional SCAD-Net (FSCAD-Net) penalty

𝑷FSCAD-Net(𝜷;λ,ρ,r):=j=1pk=1K{ρ𝑷FSCAD(βjk;λ,r)+(1ρ)λkβjkr2},assignsubscript𝑷FSCAD-Net𝜷𝜆𝜌𝑟superscriptsubscript𝑗1𝑝superscriptsubscript𝑘1𝐾conditional-set𝜌subscript𝑷FSCADsubscript𝛽𝑗𝑘𝜆𝑟1𝜌subscript𝜆𝑘evaluated-atsubscript𝛽𝑗𝑘𝑟2\bm{P}_{\text{FSCAD-Net}}(\bm{\beta};\lambda,\rho,r):=\sum_{j=1}^{p}\sum_{k=1}%^{K}\bigg{\{}\rho\bm{P}_{\text{FSCAD}}\left(\beta_{jk};\lambda,r\right)+(1-%\rho){\color[rgb]{.75,.5,.25}{\lambda_{k}}}\|\beta_{jk}\|_{r}^{2}\bigg{\}},bold_italic_P start_POSTSUBSCRIPT FSCAD-Net end_POSTSUBSCRIPT ( bold_italic_β ; italic_λ , italic_ρ , italic_r ) := ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT { italic_ρ bold_italic_P start_POSTSUBSCRIPT FSCAD end_POSTSUBSCRIPT ( italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ; italic_λ , italic_r ) + ( 1 - italic_ρ ) italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } ,(4)

where ρ[0,1]𝜌01\rho\in[0,1]italic_ρ ∈ [ 0 , 1 ] is a tuning parameter controlling the proportions between the FSCAD and L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT terms.The above penalty maintains the properties of the FSCAD penalty.In addition, the FSCAD-Net penalty can reduce variance and address misspecification in variable selections by penalizing the magnitude of j=1pk=1Kβjkr2superscriptsubscript𝑗1𝑝superscriptsubscript𝑘1𝐾superscriptsubscriptnormsubscript𝛽𝑗𝑘𝑟2\sum_{j=1}^{p}\sum_{k=1}^{K}\|\beta_{jk}\|_{r}^{2}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

It’s worth noting that the variable selections with FSCAD or FSCAD-Net do not guarantee that the selected covariates from different clusters are the same.This may not be reasonable for some applications, in which we need to identify the important variables for all clusters.In our case, the purpose of variable selections for SDOH is to facilitate the clustering on the selected SDOH covariates.To this end, we require the selected SDOH for all clusters to be the same within the estimation procedure.To facilitate such kind of investigation, we propose to shrink {βjk;k=1,,K}formulae-sequencesubscript𝛽𝑗𝑘𝑘1𝐾\{\beta_{jk};k=1,\cdots,K\}{ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ; italic_k = 1 , ⋯ , italic_K } to zero functions simultaneously within the variable selection, which is referred to as cluster-invariant sparsity.For this, we modify the FSCAD-Net penalty into the functional group SCAD-Net (FGSCAD-Net)penalty

𝑷FGSCAD-Net(𝜷;λ,ρ,r):=j=1p{ρ𝑷SCAD(𝜷jr;λ)+(1ρ)λ𝜷jr2},assignsubscript𝑷FGSCAD-Net𝜷𝜆𝜌𝑟superscriptsubscript𝑗1𝑝𝜌subscript𝑷SCADsubscriptnormsubscript𝜷𝑗𝑟𝜆1𝜌𝜆superscriptsubscriptnormsubscript𝜷𝑗𝑟2\bm{P}_{\text{FGSCAD-Net}}(\bm{\beta};\lambda,\rho,r):=\sum_{j=1}^{p}\bigg{\{}%\rho\bm{P}_{\text{SCAD}}(\|\bm{\beta}_{j\cdot}\|_{r};\lambda)+(1-\rho)\lambda%\|\bm{\beta}_{j\cdot}\|_{r}^{2}\bigg{\}},bold_italic_P start_POSTSUBSCRIPT FGSCAD-Net end_POSTSUBSCRIPT ( bold_italic_β ; italic_λ , italic_ρ , italic_r ) := ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT { italic_ρ bold_italic_P start_POSTSUBSCRIPT SCAD end_POSTSUBSCRIPT ( ∥ bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ; italic_λ ) + ( 1 - italic_ρ ) italic_λ ∥ bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } ,(5)

where 𝜷jr=k=1Kβjkr2subscriptnormsubscript𝜷𝑗𝑟superscriptsubscript𝑘1𝐾superscriptsubscriptnormsubscript𝛽𝑗𝑘𝑟2\|\bm{\beta}_{j\cdot}\|_{r}=\sqrt{\sum_{k=1}^{K}\|\beta_{jk}\|_{r}^{2}}∥ bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = square-root start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG.By grouping {βkj;k=1,,K}formulae-sequencesubscript𝛽𝑘𝑗𝑘1𝐾\left\{\beta_{kj};k=1,\ldots,K\right\}{ italic_β start_POSTSUBSCRIPT italic_k italic_j end_POSTSUBSCRIPT ; italic_k = 1 , … , italic_K } for each j𝑗jitalic_j together in the norm, the FGSCAD-Net not only yields cluster-invariant sparsity but also improves statistical efficiency for variable selection by borrowing strength from all clusters for estimating 𝜷𝜷\bm{\beta}bold_italic_β.

2.4 Regularized EM Algorithm

In this subsection, we apply an EM algorithm to conduct the parameter estimation of FMFLCM.We first introduce a latent variable zik:=I(Zi=k)assignsubscript𝑧𝑖𝑘𝐼subscript𝑍𝑖𝑘z_{ik}:=I(Z_{i}=k)italic_z start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT := italic_I ( italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_k ) to represent the cluster membership of the subject i𝑖iitalic_i, where I()𝐼I(\cdot)italic_I ( ⋅ ) is an indicator function.Denote 𝒁𝒁\bm{Z}bold_italic_Z as {zik;i=1,,n,k=1,,K}formulae-sequencesubscript𝑧𝑖𝑘𝑖1𝑛𝑘1𝐾\{z_{ik};i=1,\ldots,n,k=1,\ldots,K\}{ italic_z start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT ; italic_i = 1 , … , italic_n , italic_k = 1 , … , italic_K }.The complete log-likelihood of FMFLCM containing 𝒁𝒁\bm{Z}bold_italic_Z is then given by

lC(𝚽,𝒁)subscript𝑙𝐶𝚽𝒁\displaystyle l_{C}(\bm{\Phi},\bm{Z})italic_l start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT ( bold_Φ , bold_italic_Z )=i=1nk=1Kziks=1Si[logπk+log{f(Yi(tis);{𝑿i(tis)}T𝜷k(tis),σk2)}].absentsuperscriptsubscript𝑖1𝑛superscriptsubscript𝑘1𝐾subscript𝑧𝑖𝑘superscriptsubscript𝑠1subscript𝑆𝑖delimited-[]logsubscript𝜋𝑘log𝑓subscript𝑌𝑖subscript𝑡𝑖𝑠superscriptsubscript𝑿𝑖subscript𝑡𝑖𝑠𝑇subscript𝜷absent𝑘subscript𝑡𝑖𝑠superscriptsubscript𝜎𝑘2\displaystyle=\sum_{i=1}^{n}\sum_{k=1}^{K}z_{ik}\sum_{s=1}^{S_{i}}\bigg{[}%\text{log}\pi_{k}+\text{log}\left\{f\left(Y_{i}(t_{is});\{\bm{X}_{i}(t_{is})\}%^{T}\bm{\beta}_{\cdot k}(t_{is}),\sigma_{k}^{2}\right)\right\}\bigg{]}.= ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT [ log italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + log { italic_f ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) ; { bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) } start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) } ] .(6)

In order to solve the ill-posed issue for estimating 𝜷𝜷\bm{\beta}bold_italic_β, we employ a regularized EM (REM) algorithm using the FGSCAD-Net penalty (5) as proposed in Section 2.3.In the following, we demonstrate the E-step and M-step of the REM algorithm.

2.4.1 General procedures of REM algorithm

Let 𝚽(m1):=(𝜷(m1),(𝝈2)(m1),𝝅(m1))assignsuperscript𝚽𝑚1superscript𝜷𝑚1superscriptsuperscript𝝈2𝑚1superscript𝝅𝑚1\bm{\Phi}^{(m-1)}:=(\bm{\beta}^{(m-1)},(\bm{\sigma}^{2})^{(m-1)},\bm{\pi}^{(m-%1)})bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT := ( bold_italic_β start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT , ( bold_italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT , bold_italic_π start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) be the parameters updated at the (m1)𝑚1(m-1)( italic_m - 1 )th iteration.

E-step: With the parameter 𝚽(m1)superscript𝚽𝑚1\bm{\Phi}^{(m-1)}bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT, we first compute the conditional expectation of ziksubscript𝑧𝑖𝑘z_{ik}italic_z start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT given the samples 𝒀={Yi(tis);i=1,,n,s=1,.Si}\bm{Y}=\{Y_{i}(t_{is});i=1,\ldots,n,s=1,\ldots.S_{i}\}bold_italic_Y = { italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) ; italic_i = 1 , … , italic_n , italic_s = 1 , … . italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } and 𝑿={𝑿i(tis);i=1,,n,s=1,,Si}\bm{X}=\{\bm{X}_{i}(t_{is});i=1,\ldots,n,s=1,\ldots,S_{i}\}bold_italic_X = { bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) ; italic_i = 1 , … , italic_n , italic_s = 1 , … , italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT }

ωik(m):=𝔼𝚽(m1)(zik𝒀,𝑿)=πk(m1)s=1Sif(Yi(tis),𝑿i(tis)T𝜷k(m1)(tis),(σk2)(m1))k=1Kπk(m1)s=1Sif(Yi(tis),𝑿i(tis)T𝜷k(m1)(tis),(σk2)(m1)).assignsuperscriptsubscript𝜔𝑖𝑘𝑚subscript𝔼superscript𝚽𝑚1conditionalsubscript𝑧𝑖𝑘𝒀𝑿superscriptsubscript𝜋𝑘𝑚1superscriptsubscript𝑠1subscript𝑆𝑖𝑓subscript𝑌𝑖subscript𝑡𝑖𝑠subscript𝑿𝑖superscriptsubscript𝑡𝑖𝑠𝑇superscriptsubscript𝜷absent𝑘𝑚1subscript𝑡𝑖𝑠superscriptsuperscriptsubscript𝜎𝑘2𝑚1superscriptsubscript𝑘1𝐾superscriptsubscript𝜋𝑘𝑚1superscriptsubscript𝑠1subscript𝑆𝑖𝑓subscript𝑌𝑖subscript𝑡𝑖𝑠subscript𝑿𝑖superscriptsubscript𝑡𝑖𝑠𝑇superscriptsubscript𝜷absent𝑘𝑚1subscript𝑡𝑖𝑠superscriptsuperscriptsubscript𝜎𝑘2𝑚1\omega_{ik}^{(m)}:=\mathbb{E}_{\bm{\Phi}^{(m-1)}}(z_{ik}\mid\bm{Y},\bm{X})=%\frac{{\pi_{k}^{(m-1)}}\sum_{s=1}^{S_{i}}f\left(Y_{i}(t_{is}),\bm{X}_{i}(t_{is%})^{T}\bm{\beta}_{\cdot k}^{(m-1)}(t_{is}),(\sigma_{k}^{2})^{(m-1)}\right)}{%\sum_{k=1}^{K}{\pi_{k}^{(m-1)}}\sum_{s=1}^{S_{i}}f\left(Y_{i}(t_{is}),\bm{X}_{%i}(t_{is})^{T}\bm{\beta}_{\cdot k}^{(m-1)}(t_{is}),(\sigma_{k}^{2})^{(m-1)}%\right)}.italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT := blackboard_E start_POSTSUBSCRIPT bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT ∣ bold_italic_Y , bold_italic_X ) = divide start_ARG italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , ( italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_f ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , ( italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) end_ARG .(7)

After that, we calculate the expectation of the complete log-likelihood in (6) conditioning on 𝒀𝒀\bm{Y}bold_italic_Y and 𝑿𝑿\bm{X}bold_italic_X, given the parameter 𝚽(m1)superscript𝚽𝑚1\bm{\Phi}^{(m-1)}bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT. This leads to the Q function

Q(𝚽𝚽(m1)):=i=1nk=1Kωik(m)s=1Si[logπk+log{f(Yi(tis),{𝑿i(tis)}T𝜷k(tis),σk2)}].assign𝑄conditional𝚽superscript𝚽𝑚1superscriptsubscript𝑖1𝑛superscriptsubscript𝑘1𝐾superscriptsubscript𝜔𝑖𝑘𝑚superscriptsubscript𝑠1subscript𝑆𝑖delimited-[]logsubscript𝜋𝑘log𝑓subscript𝑌𝑖subscript𝑡𝑖𝑠superscriptsubscript𝑿𝑖subscript𝑡𝑖𝑠𝑇subscript𝜷absent𝑘subscript𝑡𝑖𝑠superscriptsubscript𝜎𝑘2\displaystyle Q(\bm{\Phi}\mid\bm{\Phi}^{(m-1)}):=\sum_{i=1}^{n}\sum_{k=1}^{K}%\omega_{ik}^{(m)}\sum_{s=1}^{S_{i}}\bigg{[}\text{log}\pi_{k}+\text{log}\left\{%f\left(Y_{i}(t_{is}),\{\bm{X}_{i}(t_{is})\}^{T}\bm{\beta}_{\cdot k}(t_{is}),%\sigma_{k}^{2}\right)\right\}\bigg{]}.italic_Q ( bold_Φ ∣ bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) := ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT [ log italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + log { italic_f ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , { bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) } start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) } ] .(8)

M-step: To facilitate the update of 𝜷𝜷\bm{\beta}bold_italic_β, we incorporate the FGSCAD-Net penalty (5) into the Q function (8).

Qpen(𝚽𝚽(m1);λ,ρ,r):=Q(𝚽𝚽(m1))𝑷FGSCAD-Net(𝜷;λ,ρ,r).\displaystyle Q^{\text{pen}}\left(\bm{\Phi}\mid\bm{\Phi}^{(m-1)};\lambda,\rho,%r\right):=Q\left(\bm{\Phi}\mid\bm{\Phi}^{(m-1)}\right)-\bm{P}_{\text{FGSCAD-%Net}}\left(\bm{\beta};\lambda,\rho,r\right).italic_Q start_POSTSUPERSCRIPT pen end_POSTSUPERSCRIPT ( bold_Φ ∣ bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ; italic_λ , italic_ρ , italic_r ) : = italic_Q ( bold_Φ ∣ bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) - bold_italic_P start_POSTSUBSCRIPT FGSCAD-Net end_POSTSUBSCRIPT ( bold_italic_β ; italic_λ , italic_ρ , italic_r ) .(9)

According to (9), we separately update the parameters 𝜷𝜷\bm{\beta}bold_italic_β, 𝝈2superscript𝝈2\bm{\sigma}^{2}bold_italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and 𝝅𝝅\bm{\pi}bold_italic_π, given the current tuning parameters λ,ρ,r𝜆𝜌𝑟\lambda,\rho,ritalic_λ , italic_ρ , italic_r. In detail, holding 𝝈2superscript𝝈2\bm{\sigma}^{2}bold_italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and 𝝅𝝅\bm{\pi}bold_italic_π fixed at their previous values at the (m1)𝑚1(m-1)( italic_m - 1 )th iteration, we update 𝜷𝜷\bm{\beta}bold_italic_β as

𝜷(m)=argmax𝜷Qpen((𝜷,(𝝈2)(m1),𝝅(m1))𝚽(m1);λ,ρ,r).superscript𝜷𝑚subscriptargmax𝜷superscript𝑄penconditional𝜷superscriptsuperscript𝝈2𝑚1superscript𝝅𝑚1superscript𝚽𝑚1𝜆𝜌𝑟\displaystyle\bm{\beta}^{(m)}=\text{argmax}_{\bm{\beta}}{Q}^{\text{pen}}\left(%\left(\bm{\beta},(\bm{\sigma}^{2})^{(m-1)},\bm{\pi}^{(m-1)}\right)\mid\bm{\Phi%}^{(m-1)};\lambda,\rho,r\right).bold_italic_β start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT = argmax start_POSTSUBSCRIPT bold_italic_β end_POSTSUBSCRIPT italic_Q start_POSTSUPERSCRIPT pen end_POSTSUPERSCRIPT ( ( bold_italic_β , ( bold_italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT , bold_italic_π start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) ∣ bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ; italic_λ , italic_ρ , italic_r ) .(10)

Once obtaining 𝜷(m)superscript𝜷𝑚\bm{\beta}^{(m)}bold_italic_β start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT, we update 𝝅(m)superscript𝝅𝑚\bm{\pi}^{(m)}bold_italic_π start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT by

πk(m)=n=1Nωik(m)N,k=1,,K,formulae-sequencesuperscriptsubscript𝜋𝑘𝑚superscriptsubscript𝑛1𝑁superscriptsubscript𝜔𝑖𝑘𝑚𝑁𝑘1𝐾\pi_{k}^{(m)}=\frac{\sum_{n=1}^{N}\omega_{ik}^{(m)}}{N},\quad k=1,\ldots,K,italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT = divide start_ARG ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_N end_ARG , italic_k = 1 , … , italic_K ,(11)

and update (𝝈2)(m)superscriptsuperscript𝝈2𝑚(\bm{\sigma}^{2})^{(m)}( bold_italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT by

(σk2)(m)=i=1Nωik(m)s=1Si{Yi(tis)𝑿i(tis)T𝜷k(m)(tis)}2i=1NSiωik(m),k=1,,K,formulae-sequencesuperscriptsuperscriptsubscript𝜎𝑘2𝑚superscriptsubscript𝑖1𝑁superscriptsubscript𝜔𝑖𝑘𝑚superscriptsubscript𝑠1subscript𝑆𝑖superscriptsubscript𝑌𝑖subscript𝑡𝑖𝑠subscript𝑿𝑖superscriptsubscript𝑡𝑖𝑠𝑇superscriptsubscript𝜷absent𝑘𝑚subscript𝑡𝑖𝑠2superscriptsubscript𝑖1𝑁subscript𝑆𝑖superscriptsubscript𝜔𝑖𝑘𝑚𝑘1𝐾(\sigma_{k}^{2})^{(m)}=\frac{\sum_{i=1}^{N}\omega_{ik}^{(m)}\sum_{s=1}^{S_{i}}%\left\{Y_{i}(t_{is})-\bm{X}_{i}(t_{is})^{T}\bm{\beta}_{\cdot k}^{(m)}(t_{is})%\right\}^{2}}{\sum_{i=1}^{N}S_{i}\omega_{ik}^{(m)}},\quad k=1,\ldots,K,( italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT = divide start_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT { italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) - bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) } start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT end_ARG , italic_k = 1 , … , italic_K ,(12)

where ωik(m)superscriptsubscript𝜔𝑖𝑘𝑚\omega_{ik}^{(m)}italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT is defined in (7).Note that the main efforts for the above procedures lie in the optimization in (10). We demonstrate this process in detail in Sections 2.4.2.

2.4.2 Optimization of FGSCAD-Net Regularization

For the functional parameter 𝜷(t)𝜷𝑡\bm{\beta}(t)bold_italic_β ( italic_t ), we parameterize its (j,k)𝑗𝑘(j,k)( italic_j , italic_k )th element, which is βjk(t)subscript𝛽𝑗𝑘𝑡\beta_{jk}(t)italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( italic_t ),by the cubic spline basis functions ψ1(t),,ψL(t)subscript𝜓1𝑡subscript𝜓𝐿𝑡\psi_{1}(t),\ldots,\psi_{L}(t)italic_ψ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) , … , italic_ψ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t ) with equally spaced knots on 𝒯𝒯\mathcal{T}caligraphic_T. We assume that

βjk(t)=𝒃jkT𝚿(t),subscript𝛽𝑗𝑘𝑡superscriptsubscript𝒃𝑗𝑘𝑇𝚿𝑡\beta_{jk}(t)=\bm{b}_{jk}^{T}\bm{\Psi}(t),italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( italic_t ) = bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_Ψ ( italic_t ) ,(13)

where 𝒃jk=(bjk1,,bjkL)Tsubscript𝒃𝑗𝑘superscriptsubscript𝑏𝑗𝑘1subscript𝑏𝑗𝑘𝐿𝑇\bm{b}_{jk}=(b_{jk1},\ldots,b_{jkL})^{T}bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT = ( italic_b start_POSTSUBSCRIPT italic_j italic_k 1 end_POSTSUBSCRIPT , … , italic_b start_POSTSUBSCRIPT italic_j italic_k italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT and 𝚿(t)=(ψ1(t),,ψL(t))T𝚿𝑡superscriptsubscript𝜓1𝑡subscript𝜓𝐿𝑡𝑇\bm{\Psi}(t)=(\psi_{1}(t),\ldots,\psi_{L}(t))^{T}bold_Ψ ( italic_t ) = ( italic_ψ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) , … , italic_ψ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t ) ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT.We then maximize (10) by substituting (13) into (9).We use 𝑸T𝑸superscript𝑸𝑇𝑸\bm{Q}^{T}\bm{Q}bold_italic_Q start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_Q to denote the Cholesky decomposition of the non-negative definite matrix

𝒯𝚿(t){𝚿(t)}T+r𝚿′′(t){𝚿′′(t)}Tdt,subscript𝒯𝚿𝑡superscript𝚿𝑡𝑇𝑟superscript𝚿′′𝑡superscriptsuperscript𝚿′′𝑡𝑇d𝑡\int_{\mathcal{T}}\bm{\Psi}(t)\{\bm{\Psi}(t)\}^{T}+r\bm{\Psi}^{{}^{\prime%\prime}}(t)\{\bm{\Psi}^{{}^{\prime\prime}}(t)\}^{T}\mathrm{d}t,∫ start_POSTSUBSCRIPT caligraphic_T end_POSTSUBSCRIPT bold_Ψ ( italic_t ) { bold_Ψ ( italic_t ) } start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT + italic_r bold_Ψ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_t ) { bold_Ψ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_t ) } start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT roman_d italic_t ,

where 𝑸𝑸\bm{Q}bold_italic_Q is an upper triangular matrix.With this, we define 𝜶j=(𝜶j1T,,𝜶jkT)Tsubscript𝜶𝑗superscriptsuperscriptsubscript𝜶𝑗1𝑇superscriptsubscript𝜶𝑗𝑘𝑇𝑇\bm{\alpha}_{j\cdot}=\left(\bm{\alpha}_{j1}^{T},\ldots,\bm{\alpha}_{jk}^{T}%\right)^{T}bold_italic_α start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT = ( bold_italic_α start_POSTSUBSCRIPT italic_j 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT , … , bold_italic_α start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT with 𝜶jk=𝑸𝒃jksubscript𝜶𝑗𝑘𝑸subscript𝒃𝑗𝑘\bm{\alpha}_{jk}=\bm{Q}\bm{b}_{jk}bold_italic_α start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT = bold_italic_Q bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT and rewrite 𝜷jrsubscriptnormsubscript𝜷𝑗𝑟\|\bm{\beta}_{j\cdot}\|_{r}∥ bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT as

𝜷jrsubscriptnormsubscript𝜷𝑗𝑟\displaystyle\|\bm{\beta}_{j\cdot}\|_{r}∥ bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT=𝜷j2+r(𝜷j)′′2absentsuperscriptnormsubscript𝜷𝑗2𝑟superscriptnormsuperscriptsubscript𝜷𝑗′′2\displaystyle=\sqrt{\|\bm{\beta}_{j\cdot}\|^{2}+r\|(\bm{\beta}_{j\cdot})^{{}^{%\prime\prime}}\|^{2}}= square-root start_ARG ∥ bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_r ∥ ( bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
=k=1K𝒃jkT𝚿(t){𝚿(t)}T𝒃jk+r𝒃jkT𝚿′′(t){𝚿′′(t)}T𝒃jkdtabsentsuperscriptsubscript𝑘1𝐾superscriptsubscript𝒃𝑗𝑘𝑇𝚿𝑡superscript𝚿𝑡𝑇subscript𝒃𝑗𝑘𝑟superscriptsubscript𝒃𝑗𝑘𝑇superscript𝚿′′𝑡superscriptsuperscript𝚿′′𝑡𝑇subscript𝒃𝑗𝑘d𝑡\displaystyle=\sqrt{\sum_{k=1}^{K}\int\bm{b}_{jk}^{T}\bm{\Psi}(t)\{\bm{\Psi}(t%)\}^{T}\bm{b}_{jk}+r\bm{b}_{jk}^{T}\bm{\Psi}^{{}^{\prime\prime}}(t)\{\bm{\Psi}%^{{}^{\prime\prime}}(t)\}^{T}\bm{b}_{jk}\mathrm{d}t}= square-root start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT ∫ bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_Ψ ( italic_t ) { bold_Ψ ( italic_t ) } start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT + italic_r bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_Ψ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_t ) { bold_Ψ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_t ) } start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT roman_d italic_t end_ARG
=k=1K(𝑸𝒃jk)T𝑸𝒃jk=𝜶j,absentsuperscriptsubscript𝑘1𝐾superscript𝑸subscript𝒃𝑗𝑘𝑇𝑸subscript𝒃𝑗𝑘normsubscript𝜶𝑗\displaystyle=\sqrt{\sum_{k=1}^{K}(\bm{Q}\bm{b}_{jk})^{T}\bm{Q}\bm{b}_{jk}}=\|%\bm{\alpha}_{j\cdot}\|,= square-root start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT ( bold_italic_Q bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_Q bold_italic_b start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT end_ARG = ∥ bold_italic_α start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ ,

where we abuse the notation ||||||\cdot||| | ⋅ | | to denote the Euclidean norm of a vector.We further denote 𝜶k=(𝜶1kT,,𝜶pkT)Tsubscript𝜶absent𝑘superscriptsuperscriptsubscript𝜶1𝑘𝑇superscriptsubscript𝜶𝑝𝑘𝑇𝑇\bm{\alpha}_{\cdot k}=\left(\bm{\alpha}_{1k}^{T},\ldots,\bm{\alpha}_{pk}^{T}%\right)^{T}bold_italic_α start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT = ( bold_italic_α start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT , … , bold_italic_α start_POSTSUBSCRIPT italic_p italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT, hij(t)=(Xij(t)ψ1(t),,Xij(t)ψL(t))T𝑸1subscript𝑖𝑗𝑡superscriptsubscript𝑋𝑖𝑗𝑡subscript𝜓1𝑡subscript𝑋𝑖𝑗𝑡subscript𝜓𝐿𝑡𝑇superscript𝑸1h_{ij}(t)=\left(X_{ij}(t)\psi_{1}(t),\ldots,X_{ij}(t)\psi_{L}(t)\right)^{T}\bm%{Q}^{-1}italic_h start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_t ) = ( italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_t ) italic_ψ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) , … , italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_t ) italic_ψ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t ) ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_Q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and 𝑯i(t)=(hi1(t)),,hip(t))T\bm{H}_{i}(t)=(h_{i1}(t)),\ldots,h_{ip}(t))^{T}bold_italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) = ( italic_h start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT ( italic_t ) ) , … , italic_h start_POSTSUBSCRIPT italic_i italic_p end_POSTSUBSCRIPT ( italic_t ) ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT.Then we can transform the optimization (10) into the standard group SCAD-L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT optimization problem (Zeng andXie, 2014) as follows

(𝜶~1(m),,𝜶~K(m))=argmax𝜶1,,𝜶KQ(𝚽𝚽(m1))j=1p{𝑷SCAD(𝜶j;λ)+ρ𝜶j2},superscriptsubscript~𝜶absent1𝑚superscriptsubscript~𝜶absent𝐾𝑚subscriptargmaxsubscript𝜶absent1subscript𝜶absent𝐾𝑄conditional𝚽superscript𝚽𝑚1superscriptsubscript𝑗1𝑝subscript𝑷SCADnormsubscript𝜶𝑗𝜆𝜌superscriptnormsubscript𝜶𝑗2\displaystyle(\widetilde{\bm{\alpha}}_{\cdot 1}^{(m)},\ldots,\widetilde{\bm{%\alpha}}_{\cdot K}^{(m)})=\text{argmax}_{\bm{\alpha}_{\cdot 1},\ldots,\bm{%\alpha}_{\cdot K}}Q(\bm{\Phi}\mid\bm{\Phi}^{(m-1)})-\sum_{j=1}^{p}\left\{\bm{P%}_{\text{SCAD}}\left(\|\bm{\alpha}_{j\cdot}\|;\lambda\right)+\rho\|\bm{\alpha}%_{j\cdot}\|^{2}\right\},( over~ start_ARG bold_italic_α end_ARG start_POSTSUBSCRIPT ⋅ 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT , … , over~ start_ARG bold_italic_α end_ARG start_POSTSUBSCRIPT ⋅ italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ) = argmax start_POSTSUBSCRIPT bold_italic_α start_POSTSUBSCRIPT ⋅ 1 end_POSTSUBSCRIPT , … , bold_italic_α start_POSTSUBSCRIPT ⋅ italic_K end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Q ( bold_Φ ∣ bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) - ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT { bold_italic_P start_POSTSUBSCRIPT SCAD end_POSTSUBSCRIPT ( ∥ bold_italic_α start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ ; italic_λ ) + italic_ρ ∥ bold_italic_α start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } ,(14)

where Q(𝚽𝚽(m1))𝑄conditional𝚽superscript𝚽𝑚1Q(\bm{\Phi}\mid\bm{\Phi}^{(m-1)})italic_Q ( bold_Φ ∣ bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) can be expressed in terms of {𝜶k;k=1,,K}formulae-sequencesubscript𝜶absent𝑘𝑘1𝐾\{\bm{\alpha}_{\cdot k};k=1,\ldots,K\}{ bold_italic_α start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ; italic_k = 1 , … , italic_K } by

Q(𝚽𝚽(m1))=i=1nk=1Kωik(m)s=1Si[logπk(m1)+log{f(Yi(tis),{𝑯i(tis)}T𝜶k,(σk2)(m1))}].𝑄conditional𝚽superscript𝚽𝑚1superscriptsubscript𝑖1𝑛superscriptsubscript𝑘1𝐾superscriptsubscript𝜔𝑖𝑘𝑚superscriptsubscript𝑠1subscript𝑆𝑖delimited-[]logsuperscriptsubscript𝜋𝑘𝑚1log𝑓subscript𝑌𝑖subscript𝑡𝑖𝑠superscriptsubscript𝑯𝑖subscript𝑡𝑖𝑠𝑇subscript𝜶absent𝑘superscriptsuperscriptsubscript𝜎𝑘2𝑚1Q(\bm{\Phi}\mid\bm{\Phi}^{(m-1)})=\sum_{i=1}^{n}\sum_{k=1}^{K}\omega_{ik}^{(m)%}\sum_{s=1}^{S_{i}}\left[\text{log}\pi_{k}^{(m-1)}+\text{log}\left\{f\left(Y_{%i}(t_{is}),\{\bm{H}_{i}(t_{is})\}^{T}\bm{\alpha}_{\cdot k},(\sigma_{k}^{2})^{(%m-1)}\right)\right\}\right].italic_Q ( bold_Φ ∣ bold_Φ start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_s = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT [ log italic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT + log { italic_f ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) , { bold_italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT ) } start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_α start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT , ( italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m - 1 ) end_POSTSUPERSCRIPT ) } ] .

This optimization problem can be efficiently solved by the group coordinate descent algorithm (Breheny andHuang, 2015).

Since the estimators involved with L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT terms are generally biased (Zou andZhang, 2009; Zeng andXie, 2014), we conduct a bias correction for 𝜶~k(m)superscriptsubscript~𝜶absent𝑘𝑚\widetilde{\bm{\alpha}}_{\cdot k}^{(m)}over~ start_ARG bold_italic_α end_ARG start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT.In detail, we use the following bias correction formula to obtain the final estimation of 𝜶k(m)superscriptsubscript𝜶absent𝑘𝑚\bm{\alpha}_{\cdot k}^{(m)}bold_italic_α start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT (Zeng andXie, 2014)

𝜶k(m)={1+2(1ρ)λ}𝜶~k(m).superscriptsubscript𝜶absent𝑘𝑚121𝜌𝜆superscriptsubscript~𝜶absent𝑘𝑚{\bm{\alpha}}_{\cdot k}^{(m)}=\left\{1+2(1-\rho)\lambda\right\}{\widetilde{\bm%{\alpha}}}_{\cdot k}^{(m)}.bold_italic_α start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT = { 1 + 2 ( 1 - italic_ρ ) italic_λ } over~ start_ARG bold_italic_α end_ARG start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT .(15)

Once obtaining 𝜶k(m)superscriptsubscript𝜶absent𝑘𝑚\bm{\alpha}_{\cdot k}^{(m)}bold_italic_α start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT, we compute 𝜷k(m)(t)superscriptsubscript𝜷absent𝑘𝑚𝑡\bm{\beta}_{\cdot k}^{(m)}(t)bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ( italic_t ) by

𝜷k(m)(t)=𝑸1𝜶k(m)𝚿(t).superscriptsubscript𝜷absent𝑘𝑚𝑡superscript𝑸1superscriptsubscript𝜶absent𝑘𝑚𝚿𝑡\bm{\beta}_{\cdot k}^{(m)}(t)=\bm{Q}^{-1}\bm{\alpha}_{\cdot k}^{(m)}\bm{\Psi}(%t).bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT ( italic_t ) = bold_italic_Q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT bold_italic_α start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_m ) end_POSTSUPERSCRIPT bold_Ψ ( italic_t ) .(16)

2.4.3 Tuning Strategy

The REM algorithm requires tuning of three hyperparameters λ𝜆\lambdaitalic_λ, ρ𝜌\rhoitalic_ρ, and r𝑟ritalic_r.The traditional strategy for choosing λ𝜆\lambdaitalic_λ, ρ𝜌\rhoitalic_ρ, and r𝑟ritalic_r needs to run the entire algorithm for all candidate combinations of (λ,ρ,r)𝜆𝜌𝑟(\lambda,\rho,r)( italic_λ , italic_ρ , italic_r ). This is computationally inefficient since there are numerous choices of candidate combinations that need to be examined.Inspired by the path-fitting algorithm (Breheny andHuang, 2015) for a fast tunning of λ𝜆\lambdaitalic_λ, we modify the traditional tuning strategy for the REM algorithm.Instead of running a complete REM for each candidate of λ𝜆\lambdaitalic_λ, we propose to tune λ𝜆\lambdaitalic_λ in each M-step of the REM algorithm; refer Part B.2 in Supplementary Material for the implementation details.By this approach, we can employ a path-fitting algorithm to select λ𝜆\lambdaitalic_λ for accelerating the tuning process (Huangetal., 2009; Lietal., 2016; Caietal., 2019).

For the hyperparameters ρ𝜌\rhoitalic_ρ and r𝑟ritalic_r, we run an entire REM for each of their candidate combinations, nested with the aforementioned strategy for tuning λ𝜆\lambdaitalic_λ.We select ρ𝜌\rhoitalic_ρ and r𝑟ritalic_r from the optional values based on the AIC

AIC(ρ,r)=2l(𝚽^)+2df,AIC𝜌𝑟2𝑙^𝚽2df\text{AIC}(\rho,r)=-2l(\widehat{\bm{\Phi}})+2\text{df},AIC ( italic_ρ , italic_r ) = - 2 italic_l ( over^ start_ARG bold_Φ end_ARG ) + 2 df ,(17)

where 𝚽^^𝚽\widehat{\bm{\Phi}}over^ start_ARG bold_Φ end_ARG is the converged parameters of the REM algorithm given the current choices of ρ𝜌\rhoitalic_ρ and r𝑟ritalic_r, and df is the degree of freedom determined as in Breheny andHuang (2015).

In addition, we need to provide the group number K𝐾Kitalic_K for the implementation of the REM algorithm.To determine K𝐾Kitalic_K, we similarly treat it as a tuning parameter, and proceed with its selection by minimizing the BIC

BIC(K)=2l(𝚽K)+df(λ)log(i=1nSi),BIC𝐾2𝑙subscript𝚽𝐾df𝜆logsuperscriptsubscript𝑖1𝑛subscript𝑆𝑖\text{BIC}(K)=-2l(\bm{\Phi}_{K})+\text{df}(\lambda)\cdot\text{log}(\sum_{i=1}^%{n}S_{i}),BIC ( italic_K ) = - 2 italic_l ( bold_Φ start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) + df ( italic_λ ) ⋅ log ( ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ,(18)

where 𝚽Ksubscript𝚽𝐾\bm{\Phi}_{K}bold_Φ start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT is the converged parameters when the number of clusters is K𝐾Kitalic_K, with ρ𝜌\rhoitalic_ρ and r𝑟ritalic_r selected based on (17).The complete REM algorithm with the tuning processes are summarized in Algorithm 1 in Part B.1 of Supplementary Material.

3 Simulation

In this section, we conduct numerical simulations to assess the performances of the proposed method in Section 2, in comparison to other competing methods across three aspects: clustering, variable selection, and parameter estimation.To begin with, we generate the functional covariates 𝑿i()subscript𝑿𝑖\bm{X}_{i}(\cdot)bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ⋅ ), i=1,,n𝑖1𝑛i=1,\ldots,nitalic_i = 1 , … , italic_n, as

𝑿i(t)=l=14𝜽ilψl(t),t[0,1],formulae-sequencesubscript𝑿𝑖𝑡superscriptsubscript𝑙14subscript𝜽𝑖𝑙subscript𝜓𝑙𝑡for-all𝑡01\bm{X}_{i}(t)=\sum_{l=1}^{4}\bm{\theta}_{il}\psi_{l}(t),\ \forall t\in[0,1],bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) = ∑ start_POSTSUBSCRIPT italic_l = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT bold_italic_θ start_POSTSUBSCRIPT italic_i italic_l end_POSTSUBSCRIPT italic_ψ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_t ) , ∀ italic_t ∈ [ 0 , 1 ] ,

where ψ1(),,ψ4()subscript𝜓1subscript𝜓4\psi_{1}(\cdot),\ldots,\psi_{4}(\cdot)italic_ψ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( ⋅ ) , … , italic_ψ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( ⋅ )are the first four nonconstant Fourier basis functions, and 𝜽ilpsubscript𝜽𝑖𝑙superscript𝑝\bm{\theta}_{il}\in\mathbb{R}^{p}bold_italic_θ start_POSTSUBSCRIPT italic_i italic_l end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT, for each i𝑖iitalic_i and l𝑙litalic_l, is a random vector sampled from a mean-zero Gaussian distribution with the covariance matrix {l2α|jk|}1j,kpp×psubscriptsuperscript𝑙2superscript𝛼𝑗𝑘formulae-sequence1𝑗𝑘𝑝superscript𝑝𝑝\left\{l^{-2}\alpha^{|j-k|}\right\}_{1\leq j,k\leq p}\in\mathbb{R}^{p\times p}{ italic_l start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT | italic_j - italic_k | end_POSTSUPERSCRIPT } start_POSTSUBSCRIPT 1 ≤ italic_j , italic_k ≤ italic_p end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_p × italic_p end_POSTSUPERSCRIPT.Here, the parameter α𝛼\alphaitalic_α controls the dependence between covariates, with a higher value indicating stronger dependencies.

To generate the functional coefficients attaining the cluster-invariant sparsity,we set 𝜷k(t)psubscript𝜷absent𝑘𝑡superscript𝑝\bm{\beta}_{\cdot k}(t)\in\mathbb{R}^{p}bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( italic_t ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT as

𝜷k(t)=(f1k(t),f1k(t),f2k(t),f2k(t),f3k(t),f3k(t),0,,0)T,k=1,,K,t[0,1],formulae-sequencesubscript𝜷absent𝑘𝑡superscriptsubscript𝑓1𝑘𝑡subscript𝑓1𝑘𝑡subscript𝑓2𝑘𝑡subscript𝑓2𝑘𝑡subscript𝑓3𝑘𝑡subscript𝑓3𝑘𝑡00𝑇formulae-sequence𝑘1𝐾𝑡01\bm{\beta}_{\cdot k}(t)=(f_{1k}(t),f_{1k}(t),f_{2k}(t),f_{2k}(t),f_{3k}(t),f_{%3k}(t),0,\ldots,0)^{T},\quad k=1,\ldots,K,\ t\in[0,1],bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( italic_t ) = ( italic_f start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT ( italic_t ) , italic_f start_POSTSUBSCRIPT 1 italic_k end_POSTSUBSCRIPT ( italic_t ) , italic_f start_POSTSUBSCRIPT 2 italic_k end_POSTSUBSCRIPT ( italic_t ) , italic_f start_POSTSUBSCRIPT 2 italic_k end_POSTSUBSCRIPT ( italic_t ) , italic_f start_POSTSUBSCRIPT 3 italic_k end_POSTSUBSCRIPT ( italic_t ) , italic_f start_POSTSUBSCRIPT 3 italic_k end_POSTSUBSCRIPT ( italic_t ) , 0 , … , 0 ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT , italic_k = 1 , … , italic_K , italic_t ∈ [ 0 , 1 ] ,

where fjk(t)=fjk(t)/fjk2subscript𝑓𝑗𝑘𝑡superscriptsubscript𝑓𝑗𝑘𝑡subscriptnormsuperscriptsubscript𝑓𝑗𝑘2f_{jk}(t)=f_{jk}^{*}(t)/\big{\|}f_{jk}^{*}\big{\|}_{2}italic_f start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( italic_t ) = italic_f start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) / ∥ italic_f start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and fjk()superscriptsubscript𝑓𝑗𝑘f_{jk}^{*}(\cdot)italic_f start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( ⋅ )s are given by

f11(t)=sin(πt2+32π)t12,superscriptsubscript𝑓11𝑡sin𝜋𝑡232𝜋𝑡12\displaystyle f_{11}^{*}(t)=\text{sin}(\frac{\pi t}{2}+\frac{3}{2}\pi)-t-\frac%{1}{2},\quaditalic_f start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) = sin ( divide start_ARG italic_π italic_t end_ARG start_ARG 2 end_ARG + divide start_ARG 3 end_ARG start_ARG 2 end_ARG italic_π ) - italic_t - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ,f12(t)superscriptsubscript𝑓12𝑡\displaystyle f_{12}^{*}(t)italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t )={cos(2πt)1}2,absentsuperscriptcos2𝜋𝑡12\displaystyle=\big{\{}\text{cos}(2\pi t)-1\big{\}}^{2},\quad= { cos ( 2 italic_π italic_t ) - 1 } start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,f13(t)superscriptsubscript𝑓13𝑡\displaystyle f_{13}^{*}(t)italic_f start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t )=f11(t)+1,absentsuperscriptsubscript𝑓11𝑡1\displaystyle=-f_{11}^{*}(t)+1,= - italic_f start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) + 1 ,
f21(t)=sin(2πt)t+0.5,superscriptsubscript𝑓21𝑡sin2𝜋𝑡𝑡0.5\displaystyle f_{21}^{*}(t)=\text{sin}(2\pi t)-t+0.5,\quaditalic_f start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) = sin ( 2 italic_π italic_t ) - italic_t + 0.5 ,f22(t)superscriptsubscript𝑓22𝑡\displaystyle f_{22}^{*}(t)italic_f start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t )=sin(πt2+π),absentsin𝜋𝑡2𝜋\displaystyle=\text{sin}(\frac{\pi t}{2}+\pi),\quad= sin ( divide start_ARG italic_π italic_t end_ARG start_ARG 2 end_ARG + italic_π ) ,f23(t)superscriptsubscript𝑓23𝑡\displaystyle f_{23}^{*}(t)italic_f start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t )=f21(t)0.5,absentsuperscriptsubscript𝑓21𝑡0.5\displaystyle=-f_{21}^{*}(t)-0.5,= - italic_f start_POSTSUBSCRIPT 21 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) - 0.5 ,
f31(t)=sin(πt2+3π2)t0.5,superscriptsubscript𝑓31𝑡sin𝜋𝑡23𝜋2𝑡0.5\displaystyle f_{31}^{*}(t)=-\text{sin}(\frac{\pi t}{2}+\frac{3\pi}{2})-t-0.5,\quaditalic_f start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) = - sin ( divide start_ARG italic_π italic_t end_ARG start_ARG 2 end_ARG + divide start_ARG 3 italic_π end_ARG start_ARG 2 end_ARG ) - italic_t - 0.5 ,f32(t)superscriptsubscript𝑓32𝑡\displaystyle f_{32}^{*}(t)italic_f start_POSTSUBSCRIPT 32 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t )=f12(t),absentsuperscriptsubscript𝑓12𝑡\displaystyle=-f_{12}^{*}(t),\quad= - italic_f start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) ,f33(t)superscriptsubscript𝑓33𝑡\displaystyle f_{33}^{*}(t)italic_f start_POSTSUBSCRIPT 33 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t )=f11(t)+t+0.5.absentsuperscriptsubscript𝑓11𝑡𝑡0.5\displaystyle=f_{11}^{*}(t)+t+0.5.= italic_f start_POSTSUBSCRIPT 11 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) + italic_t + 0.5 .

These functions are presented in Figure 2 in Supplementary Material.Note that the relevant covariates for all clusters are Xi1,,Xi6subscript𝑋𝑖1subscript𝑋𝑖6X_{i1},\ldots,X_{i6}italic_X start_POSTSUBSCRIPT italic_i 1 end_POSTSUBSCRIPT , … , italic_X start_POSTSUBSCRIPT italic_i 6 end_POSTSUBSCRIPT, each of which makes an equal contribution to Yisubscript𝑌𝑖Y_{i}italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT since fjk2=1subscriptnormsubscript𝑓𝑗𝑘21\|f_{jk}\|_{2}=1∥ italic_f start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1 for j=1,,6𝑗16j=1,\ldots,6italic_j = 1 , … , 6 and k=1,,K𝑘1𝐾k=1,\ldots,Kitalic_k = 1 , … , italic_K.We set K=3𝐾3K=3italic_K = 3.

Next, we generate the cluster membership Zisubscript𝑍𝑖Z_{i}italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT from a multinomial distribution as described in Section 2, with πk=1/K,k=1,,Kformulae-sequencesubscript𝜋𝑘1𝐾𝑘1𝐾\pi_{k}=1/K,\ k=1,\ldots,Kitalic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 1 / italic_K , italic_k = 1 , … , italic_K.Providing 𝑿i(t),Zisubscript𝑿𝑖𝑡subscript𝑍𝑖\bm{X}_{i}(t),Z_{i}bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) , italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, and 𝜷(t)𝜷𝑡\bm{\beta}(t)bold_italic_β ( italic_t ), Yi(t)subscript𝑌𝑖𝑡Y_{i}(t)italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) is generated from the model (1) for t𝑡titalic_t contained in 10101010 equally spaced knots on [0,1]01[0,1][ 0 , 1 ],where the variance of the error term σk2superscriptsubscript𝜎𝑘2\sigma_{k}^{2}italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is taken according to the signal-to-noise ratio (SNR)

σk2={i=1n𝒯k=1KI(Zi=k){𝑿i(t)T𝜷k(t)}2dtn}/SNR.superscriptsubscript𝜎𝑘2superscriptsubscript𝑖1𝑛subscript𝒯superscriptsubscript𝑘1𝐾𝐼subscript𝑍𝑖𝑘superscriptsubscript𝑿𝑖superscript𝑡𝑇subscript𝜷absent𝑘𝑡2d𝑡𝑛SNR\sigma_{k}^{2}=\left\{\frac{\sum_{i=1}^{n}\int_{\mathcal{T}}\sum_{k=1}^{K}I(Z_%{i}=k)\left\{\bm{X}_{i}(t)^{T}\bm{\beta}_{\cdot k}(t)\right\}^{2}\mathrm{d}t}{%n}\right\}\ \bigg{/}\ \text{SNR}.italic_σ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = { divide start_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT caligraphic_T end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_I ( italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_k ) { bold_italic_X start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT bold_italic_β start_POSTSUBSCRIPT ⋅ italic_k end_POSTSUBSCRIPT ( italic_t ) } start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_t end_ARG start_ARG italic_n end_ARG } / SNR .

We set the SNR as 12.Based on this setting, we evaluate the method proposed in Section 2, which is abbreviated as FGS-Net due to the use of FGSCAD-Net penalty (5).We compare FGS-Net by other REM methods penalized with the FSCAD-Net penalty (4), and FSCAD penalty (3), abbreviated as FS-Net and FS in the following.Apart from these three methods, we examine other competing methods for clustering longitudinal associations.

  • RP: This method incorporates a roughness penalty (RP) into the REM algorithm, which is given as j=1pk=1Kλβjk′′22superscriptsubscript𝑗1𝑝superscriptsubscript𝑘1𝐾𝜆superscriptsubscriptnormsuperscriptsubscript𝛽𝑗𝑘′′22\sum_{j=1}^{p}\sum_{k=1}^{K}\lambda\|\beta_{jk}^{{}^{\prime\prime}}\|_{2}^{2}∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_λ ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

  • VS-RP: This method first utilizes the FGS-Net with K=1𝐾1K=1italic_K = 1 to conduct the variable selection (VS), where the clustering is not performed at this stage. After that, we adopt the selected variables to implement the RP method for clustering.

  • LI-MIX:This method fits the data by a finite mixture of linear regression models (LI-MIX), i.e., the functional coefficient βjk(t)subscript𝛽𝑗𝑘𝑡\beta_{jk}(t)italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ( italic_t ) in (1) is treated as a constant over t𝑡titalic_t.To preform this method, we first conduct a variable selection using ordinary linear regression models shrunk with an elastic-net penalty (Zou andZhang, 2009). After that, we adopt the selected covariates to fit a finite mixture of linear regression models for the clustering (Khalili andChen, 2007).

The RP is a simplification of the FS-Net with ρ=0𝜌0\rho=0italic_ρ = 0, which only regularizes the roughness of each βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT and does not yield sparsity.VS-RP and LI-MIX are two two-step approaches, which implement the variable selection and clustering orderly.These two-step methods are more simple than the aforementioned FGS-Net, FS-Net, FS, and RP.However, selecting relevant covariates prior to the clustering procedure may raise additional problems, as the clustering performance may be sensitive to the outcome from the variable selection.It’s worth noting that LI-MIX further ignores the time-varying nature of βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT.

For each scenario with different combinations of n𝑛nitalic_n, p𝑝pitalic_p, and α𝛼\alphaitalic_α, the simulations are repeated 100 times.We adopt random initialization for the FGS-Net, FS-Net, and FS methods, i.e., set ωik(0)=I(Zi(0)=k)superscriptsubscript𝜔𝑖𝑘0𝐼superscriptsubscript𝑍𝑖0𝑘\omega_{ik}^{(0)}=I(Z_{i}^{(0)}=k)italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT = italic_I ( italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT = italic_k ), where Zi(0)superscriptsubscript𝑍𝑖0Z_{i}^{(0)}italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT is sampled from a multinomial distribution as described in Section 2, with πk=1/Ksubscript𝜋𝑘1𝐾\pi_{k}=1/Kitalic_π start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 1 / italic_K, k=1,,K𝑘1𝐾k=1,\ldots,Kitalic_k = 1 , … , italic_K.On the other hand, RP, VS-RP, and LI-MIX are initialized with the actual cluster membership ωik(0)=I(Zi=k)superscriptsubscript𝜔𝑖𝑘0𝐼subscript𝑍𝑖𝑘\omega_{ik}^{(0)}=I(Z_{i}=k)italic_ω start_POSTSUBSCRIPT italic_i italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT = italic_I ( italic_Z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_k ).To alleviate computation burdens, we only use one initialization for each simulation.Moreover, the K𝐾Kitalic_K in RP, VS-RP, and LI-MIX is fixed to 3, the true number of clusters.The K𝐾Kitalic_K for FGS-Net, FS-Net, and FS are selected based on (18) in Section 2.4.3.

The performance of clustering, variable selection, and parameter estimation is evaluated based on the following criteria.

  • Clustering accuracy is evaluated using the adjusted Rand Index (ARI, Rand, 1971).The ARI is bounded by ±1plus-or-minus1\pm 1± 1 to measures the similarity between the true cluster membership and the estimated cluster membership.A higher ARI represents a better clustering result.

  • Variable selection performance is evaluated using C and IC, where C is the number of zero coefficients that are correctly estimated to zero

    C=j=7pk=1KI(β^jk2=0),Csuperscriptsubscript𝑗7𝑝superscriptsubscript𝑘1𝐾𝐼subscriptnormsubscript^𝛽𝑗𝑘20\text{C}=\sum_{j=7}^{p}\sum_{k=1}^{K}I(\|\hat{\beta}_{jk}\|_{2}=0),C = ∑ start_POSTSUBSCRIPT italic_j = 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_I ( ∥ over^ start_ARG italic_β end_ARG start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 ) ,

    where β^jksubscript^𝛽𝑗𝑘\hat{\beta}_{jk}over^ start_ARG italic_β end_ARG start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT is the estimate of βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT. Similarly, IC is the number of nonzero coefficients that are incorrectly estimated to zero

    IC=j=16k=1KI(β^jk2=0).ICsuperscriptsubscript𝑗16superscriptsubscript𝑘1𝐾𝐼subscriptnormsubscript^𝛽𝑗𝑘20\text{IC}=\sum_{j=1}^{6}\sum_{k=1}^{{K}}I(\|\hat{\beta}_{jk}\|_{2}=0).IC = ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT italic_I ( ∥ over^ start_ARG italic_β end_ARG start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0 ) .
  • The parameter estimation accuracy is measured using the standardized mean square error (MSE) of the functional coefficients, which is defined as

    MSE=k=1Kj=1pβjkβ^jk22k=1Kj=1pβjk22.MSEsuperscriptsubscript𝑘1𝐾superscriptsubscript𝑗1𝑝superscriptsubscriptnormsubscript𝛽𝑗𝑘subscript^𝛽𝑗𝑘22superscriptsubscript𝑘1𝐾superscriptsubscript𝑗1𝑝superscriptsubscriptnormsubscript𝛽𝑗𝑘22\text{MSE}=\frac{\sum_{k=1}^{K}\sum_{j=1}^{p}\|\beta_{jk}-\hat{\beta}_{jk}\|_{%2}^{2}}{\sum_{k=1}^{K}\sum_{j=1}^{p}\|\beta_{jk}\|_{2}^{2}}.MSE = divide start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT - over^ start_ARG italic_β end_ARG start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ∑ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_K end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ∥ italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG .
n=180𝑛180n=180italic_n = 180
p𝑝pitalic_p=10p𝑝pitalic_p=30p𝑝pitalic_p=100p𝑝pitalic_p=240
ModelARICICMSEARICICMSEARICICMSEARICICMSE
α=0.4𝛼0.4\alpha=0.4italic_α = 0.4Truth1120017200125200170200
RP1.000.000.000.040.010.000.001.000.000.000.001.000.010.000.001.00
VS-RP0.4511.948.820.700.4371.708.850.720.39251.349.060.760.33700.239.090.79
LI-MIX0.284.892.310.720.2337.052.520.790.06125.882.971.350.01370.833.122.81
FS1.0012.000.060.031.0072.000.000.030.97251.930.450.090.93701.861.090.13
FS-Net1.0012.000.070.031.0072.000.000.020.97251.960.500.090.94701.930.960.12
FGS-Net1.0012.000.000.031.0072.000.000.020.99252.000.000.050.98702.000.180.08
α=0.8𝛼0.8\alpha=0.8italic_α = 0.8Truth1120017200125200170200
RP1.000.000.000.080.010.000.000.990.010.000.001.000.010.000.001.00
VS-RP0.8611.739.600.820.8571.319.540.820.84251.229.870.850.81699.7511.220.97
LI-MIX0.226.154.050.870.1842.604.291.050.08150.274.351.850.02437.734.385.15
FS1.0011.921.420.191.0070.601.820.220.98248.593.350.360.97701.918.510.77
FS-Net1.0011.910.340.111.0070.880.480.120.98249.851.360.210.98701.926.410.55
FGS-Net1.0012.000.030.091.0072.000.030.090.98251.970.210.150.99701.910.720.16
n=300𝑛300n=300italic_n = 300
p𝑝pitalic_p=10p𝑝pitalic_p=50p𝑝pitalic_p=150p𝑝pitalic_p=400
ModelARICICMSEARICICMSEARICICMSEARICICMSE
α=0.4𝛼0.4\alpha=0.4italic_α = 0.4Truth112001132001432001118200
RP1.000.000.000.040.010.000.001.000.010.000.001.000.010.000.001.00
VS-RP0.8311.976.210.420.82131.736.360.430.82431.346.450.430.851179.785.820.39
LI-MIX0.334.560.961.120.2763.451.111.180.10229.261.291.440.01648.661.502.90
FS0.9912.000.060.031.00132.000.000.011.00432.000.000.010.991181.970.060.04
FS-Net0.9912.000.060.031.00132.000.000.011.00432.000.000.010.991181.970.060.03
FGS-Net0.9912.000.000.051.00132.000.000.011.00432.000.000.040.991182.000.000.02
α=0.8𝛼0.8\alpha=0.8italic_α = 0.8Truth112001132001432001118200
RP1.000.000.000.070.010.000.000.990.010.000.001.000.010.000.001.00
VS-RP0.9111.769.120.760.91131.109.180.780.89429.789.060.770.871176.219.180.79
LI-MIX0.246.873.361.140.1977.673.271.280.09261.633.151.790.02768.213.664.08
FS0.9911.990.250.090.98131.690.330.091.00430.900.050.060.961181.968.050.75
FS-Net0.9912.000.090.060.99131.740.200.081.00431.130.020.050.971181.955.900.50
FGS-Net0.9912.000.060.090.99132.000.090.070.99432.000.060.090.991182.000.660.12

We investigate performances of the above methods under various scenarios of n𝑛nitalic_n, p𝑝pitalic_p, and α𝛼\alphaitalic_α. Here, we set n𝑛nitalic_n to 180180180180 or 300300300300, and take p𝑝pitalic_p as 10,n/6,n/2,10𝑛6𝑛210,\ n/6,\ n/2,10 , italic_n / 6 , italic_n / 2 , and 3n/43𝑛43n/43 italic_n / 4, to consider the situations ranging from a small to a large number of covariates. Additionally, we set α𝛼\alphaitalic_α to 0.40.40.40.4 and 0.80.80.80.8 to reflect the mild or strong dependence among the covariates.The averaged ARI, C, IC, and MSE are presented in Table 1.In the analysis below, we only focus on the results of n=180𝑛180n=180italic_n = 180. Similar conclusions can be obtained from the result of n=300𝑛300n=300italic_n = 300.

Overall, FGS-Net, FS-Net, and FS show superior performance under different scenarios of n𝑛nitalic_n, p𝑝pitalic_p, and α𝛼\alphaitalic_α, highlighting the advantages of implementing variable selection and clustering simultaneously under the REM framework.In contrast, the RP method only uses a roughness penalty and does not consider variable selections within the clustering. As a result, its performance quickly deteriorates for both clustering and parameter estimation as p𝑝pitalic_p increases.Furthermore, among the two-step methods, we find that the VS-RP performs poorly compared to the first three REM-type methods. For instance, in all scenarios with n=180𝑛180n=180italic_n = 180, the average ICs of VS-RP are mostly larger than 9, indicating that about half of the nonzero functional coefficients are incorrectly identified as zero.This leads to significant estimation errors in both clustering and parameter estimation by the VS-RP method, and suggests that selecting variables before clustering is ineffective. It’s worth noting that the results of LI-MIX are even worse, as this method further ignores the time-varying nature of 𝜷()𝜷\bm{\beta}(\cdot)bold_italic_β ( ⋅ ) in the estimation procedure.

In Table 1, we also observe that the ICs and MSEs of FS are significantly larger than those of FS-Net as α𝛼\alphaitalic_α increases. This is expected since the dependencies between functional covariates may impede the performance of the FS procedure. This requires an additional ridge-type penalty in the FS-net to stabilize the estimation procedure.Moreover, as p𝑝pitalic_p increases, the ICs and MSEs of FS-Net are further larger than those of FGS-net. For these cases, the high-dimensionality would undermine the statistical efficiency for both variable selection and clustering in the FS-Net. Therefore, it would be beneficial to impose cluster-invariant sparsity through FGS-net to borrow strengths across all clusters.

Functional Clustering for Longitudinal Associations between Social Determinants of Health and Stroke Mortality in the US (3)

In the case of n=180𝑛180n=180italic_n = 180, p=240𝑝240p=240italic_p = 240, and α=0.8𝛼0.8\alpha=0.8italic_α = 0.8, we further illustrate the estimation performance of the functional coefficients in Figure 3.We observe that the estimations of FS-Net exhibit smaller biases compared to FS, highlighting the significance of FS-Net in mitigating biases of functional coefficients.Furthermore, in comparison to those of FS-Net and FS, the estimated curves of FGS-Net show even smaller biases and narrower confidence bands, owing to the pursuit of cluster-invariant sparsity.Overall, FGS-Net is the most suitable choice among these six methods for clustering longitudinal associations and selecting important variables in high-dimensional functional covariates.

4 Real data

In this section, we apply our method to the SDOH and stroke mortality dataset for the clustering of their longitudinal associations. Given that the stroke mortality data are right-skewed and take positive values, we conduct a log transformation to stabilize its variance. Using our approach, we identify 2 clusters for the longitudinal associations and 18 relevant SDOH covariates for stroke mortality.

The two clusters for the county-level longitudinal associations are presented in Figure 4.The proportions of two clusters, determined by the number of counties, stand at 68% and 32%, respectively. Notably, both clusters are prevalent across the majority of states in the US, encompassing both rural and urban areas (urban: 76% and 24%, and rural: 65% and 35%, for cluster 1 and cluster 2, respectively).It’s worth noting that the southeastern US contains a region called the Stroke Belt, known for its persistent high relative excess of stroke mortality. Despite counties in the Stroke Belt having similar stroke severity, this area is also mixed by the two clusters, with proportions of 70% and 30%, respectively. These results suggest that regions sharing similar geographic and stroke characteristics may have very different SDOH-stroke mortality associations, and we may need to consider separating two types of policies for the SDOH adjustments in stroke management based on our clustering results.

Functional Clustering for Longitudinal Associations between Social Determinants of Health and Stroke Mortality in the US (4)

In addition, we illustrate the selected 18 covariates of SDOH in Table 4, ordered by their relative importance (Grömping, 2007) defined as

RI(𝜷j)=𝜷j2{1ni=1nXij1ni=1nXij2}1/2.RIsubscript𝜷𝑗subscriptnormsubscript𝜷𝑗2superscript1𝑛superscriptsubscript𝑖1𝑛superscriptnormsubscript𝑋𝑖𝑗1𝑛superscriptsubscript𝑖1𝑛subscript𝑋𝑖𝑗212\text{RI}(\bm{\beta}_{j\cdot})=\|\bm{\beta}_{j\cdot}\|_{2}\left\{\frac{1}{n}%\sum_{i=1}^{n}\big{\|}X_{ij}-\frac{1}{n}\sum_{i=1}^{n}X_{ij}\big{\|}^{2}\right%\}^{1/2}.RI ( bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ) = ∥ bold_italic_β start_POSTSUBSCRIPT italic_j ⋅ end_POSTSUBSCRIPT ∥ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT { divide start_ARG 1 end_ARG start_ARG italic_n end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∥ italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG italic_n end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_X start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ∥ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT .

We find that the influence of the SDOH on stroke mortality is mainly contributed by four aspects: social environment, built environment, health care system, and biology.Beyond the well-studied determinants from economic, cultural, and racial domains (Tsaoetal., 2023), we find that stroke mortality is significantly associated with living and working environments, education level, and overuse of opioids.Typically, among the selected variables of SDOH, most of them are related to economic development.For example, in Table 4,MEDIAN_HOME_VALUE may reflect overall economic development and infrastructure building in the community.Additionally, a higher value of ELDERLY_RENTER may suggest a larger elderly population with lower income, facing issues such as housing instability.These economic-related factors may be potentially addressed through more equitable economic policies.For example, MEDIAN_HOME_VALUE can be adjusted by facilitating economic development. In addition, serving as a sign of the elderly living condition, ELDERLY_RENTER can be adjusted by improving elderly welfare.

{tabu}

—l—X[l]—l—Variable Explanation SDOH Domain
MEDIAN_HOME_VALUE Median home value of owner-occupied housing units Sociocultural Environment
NO_ENGLISH Population that does not speak English at all, % Sociocultural Environment
ASIAN_LANG Population that speaks Asian and Pacific Island languages, % Sociocultural Environment
ELDERLY_RENTER Rental units occupied by householders aged 65 and older, % Built Environment
GINI_INDEX Gini index of income inequality Sociocultural Environment
HOME_WITH_KIDS Owner-occupied housing units with children, % Built Environment
AGRI_JOB Employed working in agriculture, forestry, fishing and hunting, and mining, % Sociocultural Environment
NO_VEHICLE Housing units with no vehicle available, % Built Environment
OPIOID Number of opioid prescriptions per 100 persons Health Care System
WEAK_ENGLISH Population that does not speak English well, % Sociocultural Environment
BLACK Population reporting Black race, % Biology
BACHELOR Population with a bachelor’s degree, % Sociocultural Environment
NO_FUEL_HOME Occupied housing units without fuel, % Built Environment
TIME Time Effect Sociocultural Environment
ONLY_ENGLISH Population that only speaks English, % Sociocultural Environment
MOBILE_HOME Housing units that are mobile homes, % Built Environment
BELOW_HIGH_SCH Population with less than high school education, % Sociocultural Environment
DRIVE_2WORK Workers taking a car, truck, or van to work, % Built Environment

Functional Clustering for Longitudinal Associations between Social Determinants of Health and Stroke Mortality in the US (5)

To further quantify the longitudinal associations between SDOH and stroke mortality, we investigate the functional coefficients βjksubscript𝛽𝑗𝑘\beta_{jk}italic_β start_POSTSUBSCRIPT italic_j italic_k end_POSTSUBSCRIPT estimated from the dataset.Here, we only focus on the coefficients from the leading four important SDOH, which are MEDIAN_HOME_VALUE, NO_ENGLISH, ASIAN_LANG, and ELDERLY_RENTER.Their longitudinal associations in the two clusters are shown in Figure 5, along with their 95%percent9595\%95 % confidence bands obtained by bootstraps.We notice that the leading four SDOH possess time-varying associations with stroke mortality, which are distinguished by two clusters. Furthermore, these associations are notably different between the two clusters.For example, the fluctuation of the longitudinal associations in cluster 2 is more significant than those in cluster 1.Additionally, we observe that in cluster 2, all four associations exhibit a common inflection point in 2013 (the dotted vertical lines in Figure 5).These findings help us better understand the dynamics of the associations between SDOH and stroke mortality in US counties.

In Figure 5, MEDIAN_HOME_VALUE shows a stable and weak association with stroke mortality for the counties in cluster 1, while those in cluster 2 exhibit a more intense negative effect with stroke mortality. The situation for ELDERLY_RENTER differs, with the association in cluster 2 showing significant fluctuation, while that in cluster 1 presents a time-increasing negative association with stroke mortality.Typically, economic factors have been found to affect stroke outcomes causally (Bannetal., 2023).As two economic-related factors, MEDIAN_HOME_VALUE and ELDERLY_RENTER have also been identified to possess significant associations with stroke mortality (Rodgers etal., 2019; Mawhorteretal., 2023).Our findings not only align with existing literature but also provide further insights into more tailored stroke mortality prevention strategies related to SDOH variables.For instance, the notable negative association between MEDIAN_HOME_VALUE and stroke mortality in cluster 2 highlights the importance of focusing on infrastructure development, maintenance, and enhancing overall economic equity in these regions. Noting the time-increasing negative association between ELDERLY_RENTER and stroke mortality in cluster 1, it may be beneficial to prioritize viable housing programs for lower-income elderly populations in these regions.Initiatives such as housing vouchers or subsidies may also be helpful, particularly in recent years when inflation is on the rise.

In addition to the above two covariates, NO_ENGLISH and ASIAN_LANG are two other SDOH variables measuring the sociocultural environment of the county.NO_ENGLISH, an indicator of the percentage of the population that does not speak English at all, is found to be associated with stroke mortality in both clusters.The direction of the associations shifts from positive to negative.A similar decreasing trend is observed in the association between ASIAN_LANG (a measure of the percentage of the population that speaks Asian and Pacific Island languages) and stroke mortality in cluster 2.Meanwhile, the association between ASIAN_LANG and stroke mortality in cluster 1 remains stable and weakly positive over time.

Our result shows that the association between the density of immigrants or Asian and Pacific Islanders and stroke mortality may not be uniform across regions and time periods. It is worth considering that immigrants or Asian and Pacific Islanders who experience a stroke may encounter challenges in accessing timely stroke care if they do not speak English. This language barrier may potentially contribute to an increased risk of stroke-related death in specific regions and during certain time periods (Shahetal., 2015).However, as suggested by our results, their risks with stroke-related death may have diminished from 2010 to 2018.This implies a gradual improvement of stroke care for immigrants or Asian and Pacific Islanders in the US, particularly for the counties in cluster 2.

5 Dicussion

In this article, we introduce a novel clustering method for regional divisions of US counties based on their longitudinal associations between SDOH and stroke mortality.The challenges for this task arise from the latent and cluster-specific nature of the associations, which are compounded by their functional and high-dimensional characteristics simultaneously. To tackle these complex structures, we propose an REM algorithm that utilizes a finite mixture of functional linear concurrent models.Our method explores the clustering-invariant sparsity via a FGSCAD-Net penalty within the REM algorithm, allowing for efficient variable selection in the functional covariates to identify the most significant associations among all clusters.The effectiveness of our method has been demonstrated via extensive simulations.In the end, we apply the proposed method to our SDOH – stroke mortality longitudinal data, facilitating the regional divisions of US counties. This enables the identification of regions for informing SDOH–targeted prevention of stroke mortality.

In the analysis of the SDOH and stroke mortality dataset, our clustering map represents a novel result for region-division in stroke management, taking into account the similarity among the longitudinal associations between SDOH and stroke mortality.These findings suggest that heterogeneity in the associations occurs even within areas sharing similar geographical conditions, stroke mortality, or economic status.This implies that the region divisions solely based on the above factors may not be effective for SDOH-based stroke death control.Moreover, we uncover various patterns of longitudinal associations among the two identified clusters in US counties.The dynamics within these associations, including scale, trends, and inflection points, not only provide heuristic information for understanding complex SDOH – stroke mortality associations but are also useful for establishing timely SDOH adjustments in stroke death control.Finally, the proposed clustering method can also be generalized to other high-dimensional longitudinal datasets, serving for clustering and variable selections in their longitudinal associations.

SUPPLEMENTARY MATERIAL

“SuppMaterial.pdf”:

This file describes the details related to the proposed approach method, including the dataset, the selection scheme of tuning parameters, and other supporting results of the simulation study.

References

  • Bannetal. (2023)Bann, D., L.Wright, A.Hughes, and N.Chaturvedi (2023).Socioeconomic inequalities in cardiovascular disease: a causalperspective.Nature Reviews Cardiology, 1–12.
  • Benjaminetal. (2019)Benjamin, E.J., P.Muntner, A.Alonso, M.S. Bittencourt, C.W. Callaway,A.P. Carson, A.M. Chamberlain, A.R. Chang, S.Cheng, S.R. Das, etal.(2019).Heart disease and stroke statistics—2019 update: a report from theamerican heart association.Circulation139(10), e56–e528.
  • Breheny andHuang (2015)Breheny, P. and J.Huang (2015).Group descent algorithms for nonconvex penalized linear and logisticregression models with grouped predictors.Statistics and computing25(2), 173–187.
  • Caietal. (2019)Cai, T.T., J.Ma, and L.Zhang (2019).Chime: Clustering of high-dimensional gaussian mixtures with emalgorithm and its optimality.The Annals of Statistics47(3), 1234–1267.
  • Fan andLi (2001)Fan, J. and R.Li (2001).Variable selection via nonconcave penalized likelihood and its oracleproperties.Journal of the American statistical Association96(456), 1348–1360.
  • Gebreab etal. (2015)Gebreab, S.Y., S.K. Davis, J.Symanzik, G.A. Mensah, G.H. Gibbons, andA.V. Diez-Roux (2015).Geographic variations in cardiovascular health in the united states:contributions of state-and individual-level factors.Journal of the American Heart Association4(6),e001673.
  • Goldsmith andSchwartz (2017)Goldsmith, J. and J.E. Schwartz (2017).Variable selection in the functional linear concurrent model.Statistics in medicine36(14), 2237–2250.
  • Grömping (2007)Grömping, U. (2007).Relative importance for linear regression in r: the package relaimpo.Journal of statistical software17, 1–27.
  • Havranek etal. (2015)Havranek, E.P., M.S. Mujahid, D.A. Barr, I.V. Blair, M.S. Cohen,S.Cruz-Flores, G.Davey-Smith, C.R. Dennison-Himmelfarb, M.S. Lauer, D.W.Lockwood, etal. (2015).Social determinants of risk and outcomes for cardiovascular disease:a scientific statement from the american heart association.Circulation132(9), 873–898.
  • Heetal. (2021)He, J., Z.Zhu, J.D. Bundy, K.S. Dorans, J.Chen, and L.L. Hamm (2021).Trends in cardiovascular risk factors in us adults by race andethnicity and socioeconomic status, 1999-2018.Jama326(13), 1286–1298.
  • Hollowayetal. (2014)Holloway, R.G., R.M. Arnold, C.J. Creutzfeldt, E.F. Lewis, B.J. Lutz,R.M. McCann, A.A. Rabinstein, G.Saposnik, K.N. Sheth, D.B. Zahuranec,etal. (2014).Palliative and end-of-life care in stroke: a statement for healthcareprofessionals from the american heart association/american strokeassociation.Stroke45(6), 1887–1916.
  • Huangetal. (2009)Huang, J.Z., H.Shen, and A.Buja (2009).The analysis of two-way functional data using two-way regularizedsingular value decompositions.Journal of the American Statistical Association104(488), 1609–1620.
  • Jacobsetal. (1991)Jacobs, R.A., M.I. Jordan, S.J. Nowlan, and G.E. Hinton (1991).Adaptive mixtures of local experts.Neural computation3(1), 79–87.
  • Jacques andPreda (2013)Jacques, J. and C.Preda (2013).Funclust: A curves clustering method using functional randomvariables density approximation.Neurocomputing112, 164–171.
  • Jacques andPreda (2014)Jacques, J. and C.Preda (2014).Model-based clustering for multivariate functional data.Computational Statistics & Data Analysis71, 92–106.
  • Jiang andTanner (1999)Jiang, W. and M.A. Tanner (1999).Hierarchical mixtures-of-experts for exponential family regressionmodels: approximation and maximum likelihood estimation.The Annals of Statistics27(3), 987–1011.
  • Kapral etal. (2019)Kapral, M.K., P.C. Austin, G.Jeyakumar, R.Hall, A.Chu, A.M. Khan, A.Y.Jin, C.Martin, D.Manuel, F.L. Silver, etal. (2019).Rural-urban differences in stroke risk factors, incidence, andmortality in people with and without prior stroke: The canheart stroke study.Circulation: Cardiovascular Quality and Outcomes12(2), e004973.
  • Khalili andChen (2007)Khalili, A. and J.Chen (2007).Variable selection in finite mixture of regression models.Journal of the american Statistical association102(479), 1025–1038.
  • Kongetal. (2016)Kong, D., K.Xue, F.Yao, and H.H. Zhang (2016).Partially functional linear regression in high dimensions.Biometrika103(1), 147–159.
  • Koton etal. (2014)Koton, S., A.L. Schneider, W.D. Rosamond, E.Shahar, Y.Sang, R.F.Gottesman, and J.Coresh (2014).Stroke incidence and mortality trends in us communities, 1987 to2011.Jama312(3), 259–268.
  • Kowarik andTempl (2016)Kowarik, A. and M.Templ (2016).Imputation with the r package vim.Journal of statistical software74, 1–16.
  • Labarthe etal. (2014)Labarthe, D., B.Grover, J.Galloway, L.Gordon, S.Moffatt, T.Pearson,M.Schoeberl, and S.Sidney (2014).The public health action plan to prevent heart disease and stroke:Ten-year update.In Washington, DC: National Forum for Heart Disease and StrokePrevention.
  • Lietal. (2016)Li, G., H.Shen, and J.Z. Huang (2016).Supervised sparse and functional principal component analysis.Journal of Computational and Graphical Statistics25(3), 859–878.
  • Liangetal. (2021)Liang, D., H.Zhang, X.Chang, and H.Huang (2021).Modeling and regionalization of china’s pm2. 5 usingspatial-functional mixture models.Journal of the American Statistical Association116(533), 116–132.
  • Lu and Song (2012)Lu, Z. and X.Song (2012).Finite mixture varying coefficient models for analyzing longitudinalheterogenous data.Statistics in medicine31(6), 544–560.
  • Mawhorteretal. (2023)Mawhorter, S., E.M. Crimmins, and J.A. Ailshire (2023).Housing and cardiometabolic risk among older renters and homeowners.Housing studies38(7), 1342–1364.
  • Meieretal. (2009)Meier, L., S.Vande Geer, and P.Bühlmann (2009).High-dimensional additive modeling.The Annals of Statistics37(6B), 3779–3821.
  • Mozaffarianetal. (2015)Mozaffarian, D., E.J. Benjamin, A.S. Go, D.K. Arnett, M.J. Blaha,M.Cushman, S.DeFerranti, J.-P. Després, H.J. Fullerton, V.J. Howard,etal. (2015).Heart disease and stroke statistics—2015 update: a report from theamerican heart association.circulation131(4), e29–e322.
  • Powell-Wileyetal. (2022)Powell-Wiley, T.M., Y.Baumer, F.O. Baah, A.S. Baez, N.Farmer, C.T.Mahlobo, M.A. Pita, K.A. Potharaju, K.Tamura, and G.R. Wallen (2022).Social determinants of cardiovascular disease.Circulation research130(5), 782–799.
  • Ramsay andSilverman (2005)Ramsay, J. and B.Silverman (2005).Functional Data Analysis (2nd ed.).Springer.
  • Ramsay andSilverman (2002)Ramsay, J.O. and B.W. Silverman (2002).Applied functional data analysis: methods and case studies.Springer.
  • Rand (1971)Rand, W.M. (1971).Objective criteria for the evaluation of clustering methods.Journal of the American Statistical association66(336), 846–850.
  • Record etal. (2015)Record, N.B., D.K. Onion, R.E. Prior, D.C. Dixon, S.S. Record, F.L.Fowler, G.R. Cayer, C.I. Amos, and T.A. Pearson (2015).Community-wide cardiovascular disease prevention programs and healthoutcomes in a rural county, 1970-2010.Jama313(2), 147–155.
  • Rodgers etal. (2019)Rodgers, J., B.A. Briesacher, R.B. Wallace, I.Kawachi, C.F. Baum, andD.Kim (2019).County-level housing affordability in relation to risk factors forcardiovascular disease among middle-aged adults: The national longitudinalsurvey of youths 1979.Health & place59, 102194.
  • Shahetal. (2015)Shah, B.R., N.A. Khan, M.J. O’Donnell, and M.K. Kapral (2015).Impact of language barriers on stroke care and outcomes.Stroke46(3), 813–818.
  • Son etal. (2023)Son, H., D.Zhang, Y.Shen, A.Jaysing, J.Zhang, Z.Chen, L.Mu, J.Liu,J.Rajbhandari-Thapa, Y.Li, etal. (2023).Social determinants of cardiovascular health: a longitudinal analysisof cardiovascular disease mortality in us counties from 2009 to 2018.Journal of the American Heart Association12(2),e026940.
  • Tsaoetal. (2022)Tsao, C.W., A.W. Aday, Z.I. Almarzooq, A.Alonso, A.Z. Beaton, M.S.Bittencourt, A.K. Boehme, A.E. Buxton, A.P. Carson, Y.Commodore-Mensah,etal. (2022).Heart disease and stroke statistics—2022 update: a report from theamerican heart association.Circulation145(8), e153–e639.
  • Tsaoetal. (2023)Tsao, C.W., A.W. Aday, Z.I. Almarzooq, C.A. Anderson, P.Arora, C.L.Avery, C.M. Baker-Smith, A.Z. Beaton, A.K. Boehme, A.E. Buxton, etal.(2023).Heart disease and stroke statistics—2023 update: a report from theamerican heart association.Circulation147(8), e93–e621.
  • Villablanca etal. (2016)Villablanca, A.C., C.Slee, L.Lianov, and D.Tancredi (2016).Outcomes of a clinic-based educational intervention forcardiovascular disease prevention by race, ethnicity, and urban/rural status.Journal of Women’s Health25(11), 1174–1186.
  • Wangetal. (2008)Wang, L., H.Li, and J.Z. Huang (2008).Variable selection in nonparametric varying-coefficient models foranalysis of repeated measurements.Journal of the American Statistical Association103(484), 1556–1569.
  • Yaoetal. (2011)Yao, F., Y.Fu, and T.C. Lee (2011).Functional mixture regression.Biostatistics12(2), 341–353.
  • Yi andCaramanis (2015)Yi, X. and C.Caramanis (2015).Regularized em algorithms: A unified framework and statisticalguarantees.Advances in Neural Information Processing Systems28.
  • Zelko etal. (2023)Zelko, A., P.R. Salerno, S.Al-Kindi, F.Ho, F.P. Rocha, K.Nasir,S.Rajagopalan, S.Deo, and N.Sattar (2023).Geographically weighted modeling to explore social and environmentalfactors affecting county-level cardiovascular mortality in people withdiabetes in the united states: A cross-sectional analysis.The American Journal of Cardiology209, 193–198.
  • Zeng andXie (2014)Zeng, L. and J.Xie (2014).Group variable selection via scad-l 2.Statistics48(1), 49–66.
  • Zou andHastie (2005)Zou, H. and T.Hastie (2005).Regularization and variable selection via the elastic net.Journal of the royal statistical society: series B (statisticalmethodology)67(2), 301–320.
  • Zou andZhang (2009)Zou, H. and H.H. Zhang (2009).On the adaptive elastic-net with a diverging number of parameters.Annals of statistics37(4), 1733.
Functional Clustering for Longitudinal Associations between Social Determinants of Health and Stroke Mortality in the US (2024)
Top Articles
Latest Posts
Article information

Author: Van Hayes

Last Updated:

Views: 5971

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Van Hayes

Birthday: 1994-06-07

Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

Phone: +512425013758

Job: National Farming Director

Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.